Lining Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028062/publications.pdf

Version: 2024-02-01

	361413	315739
1,679	20	38
citations	h-index	g-index
5 0	5 0	2112
58	58	2113
docs citations	times ranked	citing authors
	1,679 citations 58 docs citations	1,679 20 citations h-index 58 58

#	Article	IF	CITATIONS
1	Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication, 2022, 14, 015006.	7.1	27
2	Mechano-Redox Control of Integrins in Thromboinflammation. Antioxidants and Redox Signaling, 2022, 37, 1072-1093.	5.4	1
3	Microfluidic post method for 3-dimensional modeling of platelet–leukocyte interactions. Analyst, The, 2022, 147, 1222-1235.	3 . 5	7
4	The N-terminal autoinhibitory module of the A1 domain in von Willebrand factor stabilizes the mechanosensor catch bond. RSC Chemical Biology, 2022, 3, 707-720.	4.1	10
5	Micropipette-based biomechanical nanotools on living cells. European Biophysics Journal, 2022, 51, 119-133.	2.2	16
6	Fluorescence-coupled micropipette aspiration assay to examine calcium mobilization caused by red blood cell mechanosensing. European Biophysics Journal, 2022, 51, 135-146.	2.2	9
7	Recent Advances of Optical Tweezers–Based Dynamic Force Spectroscopy and Mechanical Measurement Assays for Live-Cell Mechanobiology. Frontiers in Physics, 2022, 10, .	2.1	7
8	The soluble N-terminal autoinhibitory module of the A1 domain in von Willebrand factor partially suppresses its catch bond with glycoprotein $lb\hat{l}_{\pm}$ in a sandwich complex. Physical Chemistry Chemical Physics, 2022, 24, 14857-14865.	2.8	2
9	Computational Fluid Dynamics Simulations at Micro-Scale Stenosis for Microfluidic Thrombosis Model Characterization. MCB Molecular and Cellular Biomechanics, 2021, 18, 1-10.	0.7	7
10	A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis. Nature, 2021, 591, 438-444.	27.8	158
11	Hemodynamic analysis for stenosis microfluidic model of thrombosis with refined computational fluid dynamics simulation. Scientific Reports, 2021, 11, 6875.	3.3	23
12	Modified N-linked glycosylation status predicts trafficking defective human Piezo1 channel mutations. Communications Biology, 2021, 4, 1038.	4.4	18
13	Novel Pressure-Regulated Deployment Strategy for Improving the Safety and Efficacy of Balloon-Expandable Transcatheter Aortic Valves. JACC: Cardiovascular Interventions, 2021, 14, 2503-2515.	2.9	10
14	Emerging Microfluidic Approaches for Platelet Mechanobiology and Interplay With Circulatory Systems. Frontiers in Cardiovascular Medicine, 2021, 8, 766513.	2.4	11
15	Molecular Spring Constant Analysis by Biomembrane Force Probe Spectroscopy. Journal of Visualized Experiments, 2021, , .	0.3	2
16	Platelet Mechanobiology Inspired Microdevices: From Hematological Function Tests to Disease and Drug Screening. Frontiers in Pharmacology, 2021, 12, 779753.	3.5	6
17	Partial loss of actin nucleator actinâ€related protein 2/3 activity triggers blebbing in primary T lymphocytes. Immunology and Cell Biology, 2020, 98, 93-113.	2.3	20
18	Ultra-stable Biomembrane Force Probe for Accurately Determining Slow Dissociation Kinetics of PD-1 Blockade Antibodies on Single Living Cells. Nano Letters, 2020, 20, 5133-5140.	9.1	19

#	Article	IF	Citations
19	Biomechanical thrombosis: the dark side of force and dawn of mechano-medicine. Stroke and Vascular Neurology, 2020, 5, 185-197.	3.3	17
20	Upconversion Nonlinear Structured Illumination Microscopy. Nano Letters, 2020, 20, 4775-4781.	9.1	38
21	Distinctive Mechano-sensitivity of Focal Adhesion Integrins $\hat{l}\pm5\hat{l}^21$ and $\hat{l}\pm V\hat{l}^23$ in Conformational Changes. Biophysical Journal, 2020, 118, 162a.	0.5	0
22	Dynamic Force Spectroscopy Analysis on the Redox States of Protein Disulphide Bonds. Methods in Molecular Biology, 2019, 1967, 115-131.	0.9	9
23	Illustrated Stateâ€ofâ€theâ€Art Capsules of the ISTH 2019 Congress in Melbourne, Australia. Research and Practice in Thrombosis and Haemostasis, 2019, 3, 431-497.	2.3	11
24	Dynamic bonds and their roles in mechanosensing. Current Opinion in Chemical Biology, 2019, 53, 88-97.	6.1	31
25	Tensile and compressive force regulation on cell mechanosensing. Biophysical Reviews, 2019, 11, 311-318.	3.2	18
26	An integrin $\hat{l}\pm llb\hat{l}^23$ intermediate affinity state mediates biomechanical platelet aggregation. Nature Materials, 2019, 18, 760-769.	27.5	94
27	Straight Channel Microfluidic Chips for the Study of Platelet Adhesion under Flow. Bio-protocol, 2019, 9, e3195.	0.4	7
28	Fast Force Loading Disrupts Molecular Binding Stability in Human and Mouse Cell Adhesions. MCB Molecular and Cellular Biomechanics, 2019, 16, 211-223.	0.7	10
29	Diabetes and Thrombosis: The Dark Side of the Force. MCB Molecular and Cellular Biomechanics, 2019, 16, 96-96.	0.7	0
30	Fast Force Loading Disrupts Molecular Bond Stability in Human and Mouse Cell Adhesions. MCB Molecular and Cellular Biomechanics, 2019, 16, 97-97.	0.7	1
31	Autoregulation of von Willebrand factor function by a disulfide bond switch. Science Advances, 2018, 4, eaaq1477.	10.3	79
32	Anisotropic functionalization of upconversion nanoparticles. Chemical Science, 2018, 9, 4352-4358.	7.4	45
33	Compression force sensing regulates integrin $\hat{l}\pm IIb\hat{l}^23$ adhesive function on diabetic platelets. Nature Communications, 2018, 9, 1087.	12.8	39
34	Apolipoprotein A-IV binds αIIbÎ ² 3 integrin and inhibits thrombosis. Nature Communications, 2018, 9, 3608.	12.8	75
35	Platelet receptor-mediated mechanosensing and thrombosis. , 2018, , 285-304.		0
36	Biophysical nanotools for single-molecule dynamics. Biophysical Reviews, 2018, 10, 1349-1357.	3.2	21

#	Article	lF	Citations
37	Mechano-redox control of integrin de-adhesion. ELife, 2018, 7, .	6.0	47
38	Two-Dimensional Analysis of Cross-Junctional Molecular Interaction by Force Probes. Methods in Molecular Biology, 2017, 1584, 231-258.	0.9	12
39	Receptor-mediated cell mechanosensing. Molecular Biology of the Cell, 2017, 28, 3134-3155.	2.1	168
40	Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Scientific Reports, 2017, 7, 14185.	3. 3	33
41	Benchmarks of Biomembrane Force Probe Spring Constant Models. Biophysical Journal, 2017, 113, 2842-2845.	0.5	14
42	Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. ELife, $2016, 5, .$	6.0	66
43	MouseMove: an open source program for semi-automated analysis of movement and cognitive testing in rodents. Scientific Reports, 2015, 5, 16171.	3.3	61
44	Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell. Journal of Visualized Experiments, 2015, , e52975.	0.3	39
45	Transport Regulation of Two-Dimensional Receptor-Ligand Association. Biophysical Journal, 2015, 108, 1773-1784.	0.5	17
46	Von Willebrand factor-A1 domain binds platelet glycoprotein $lb\hat{l}\pm$ in multiple states with distinctive force-dependent dissociation kinetics. Thrombosis Research, 2015, 136, 606-612.	1.7	46
47	Force-Induced Unfolding of Leucine-Rich Repeats of Glycoprotein Ibα Strengthens Ligand Interaction. Biophysical Journal, 2015, 109, 1781-1784.	0.5	34
48	Identification and Characterization of Integrin alphallbbeta3 Intermediate Affinity State Induced By Gpibalpha Mechanotransduction. Blood, 2015, 126, 237-237.	1.4	0
49	Dynamic control of \hat{l}^21 integrin adhesion by the plexinD1-sema3E axis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 379-384.	7.1	69
50	Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nature Communications, 2014, 5, 4886.	12.8	85
51	Apolipoprotein Î'-IV Is a Novel Ligand of Platelet αIIbβ3 Integrin and an Endogenous Thrombosis Inhibitor: Measurement of Single-Molecular Interactions By Biomembrane Force Probe. Blood, 2014, 124, 92-92.	1.4	3
52	Abstract 225: Apolipoprotein A-IV Is a $\tilde{\text{A}}\ddot{\text{Y}}$ 3 Integrin Ligand and an Endogenous Inhibitor of Platelets: Novel Mechanisms of Prevention and Treatment for Atherothrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, .	2.4	0
53	The N-terminal Flanking Region of the A1 Domain Regulates the Force-dependent Binding of von Willebrand Factor to Platelet Glycoprotein Ibl±. Journal of Biological Chemistry, 2013, 288, 32289-32301.	3.4	91
54	An HMM-based algorithm for evaluating rates of receptor-ligand binding kinetics from thermal fluctuation data. Bioinformatics, 2013, 29, 1511-1518.	4.1	1

#	Article	IF	CITATIONS
55	Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood, 2013, 122, 1695-1706.	1.4	35
56	A new method for splice site prediction based on the sequence patterns of splicing signals and regulatory elements. Science Bulletin, 2008, 53, 3331-3340.	9.0	9