
Sankar Sankar Bhattacharya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6027869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gasification Kinetics of Victorian Brown Coal-Derived Char in Fluidized Bed Reactor. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	2.3	1
2	Fe-Ce0.1Zr0.9O2-Ag electrode for one-step methane synthesis in solid oxide electrolyser. Ionics, 2022, 28, 329-340.	2.4	1
3	Process modelling and techno-economic analysis of a 550MWe chemical looping power plant with victorian brown coal. International Journal of Greenhouse Gas Control, 2022, 113, 103547.	4.6	5
4	Dual-Polarized Keratin-Based UWB Chipless RFID Relative Humidity Sensor. IEEE Sensors Journal, 2022, 22, 1924-1932.	4.7	12
5	Valorisation of glycerol through catalytic hydrogenolysis routes for sustainable production of value-added C ₃ chemicals: current and future trends. Sustainable Energy and Fuels, 2022, 6, 596-639.	4.9	18
6	Evaluation of novel ZnO–Ag cathode for CO2 electroreduction in solid oxide electrolyser. Journal of Solid State Electrochemistry, 2022, 26, 695-707.	2.5	2
7	Thermochemical Conversion of Untreated and Pretreated Biomass for Efficient Production of Levoglucosenone and 5-Chloromethylfurfural in the Presence of an Acid Catalyst. Catalysts, 2022, 12, 206.	3.5	1
8	A Study on Pyrolysis of Pretreated Automotive Shredder Residue—Thermochemical Calculations and Experimental Work. Frontiers in Sustainability, 2022, 3, .	2.6	3
9	Gasification kinetics of Barapukurian coal char using carbon dioxide and steam reactants. Chemical Papers, 2022, 76, 4459-4470.	2.2	4
10	Syngas production from two-step CO2 gasification of low rank coal in an entrained flow reactor. Journal of the Energy Institute, 2022, 103, 169-176.	5.3	6
11	Insights into the options of energy and metal recovery from automotive shredder residue: A review. Resources, Conservation & Recycling Advances, 2022, 15, 200097.	2.5	2
12	Substituting coal with renewable biomass for electricity production using co-gasification technique: A short-term sustainable pathway for developing countries. , 2022, , 179-202.		2
13	Evaluation of high-temperature pyrolysis and CO2 gasification performance of bituminous coal in an entrained flow gasifier. Journal of the Energy Institute, 2021, 94, 294-309.	5.3	24
14	Characterisation of Australian ilmenite oxygen carrier during chemical looping combustion of Victorian brown coal. Fuel Processing Technology, 2021, 213, 106669.	7.2	11
15	Techno-Economic and Life Cycle Assessment of Pyrolysis of Unsegregated Urban Municipal Solid Waste in India. Industrial & Engineering Chemistry Research, 2021, 60, 1473-1482.	3.7	33
16	EFFECT OF PORE DIFFUSION ON THE GASIFICATION CHARACTERISTICS OF COAL CHAR UNDER CO2 ATMOSPHERE. International Journal of Energy for A Clean Environment, 2021, 22, 85-102.	1.1	5
17	Effect of reactant types (steam, <scp> CO ₂ </scp> and steam + <scp> CO ₂) of Energy Research, 2021, 45, 9492-9501.</scp>	Tj ETQq1 4.5	1 0.784314 19
18	A review on steel slag valorisation <i>via</i> mineral carbonation. Reaction Chemistry and Engineering, 2021, 6, 1152-1178.	3.7	28

#	Article	IF	CITATIONS
19	<i>In situ</i> synthesis of methane using Ag–GDC composite electrodes in a tubular solid oxide electrolytic cell: new insight into the role of oxide ion removal. Sustainable Energy and Fuels, 2021, 5, 2055-2064.	4.9	7
20	Evaluations of Australian coals as fuel for carbon fuel cell. Fuel, 2021, 287, 119414.	6.4	9
21	Enhancement of performance and emission characteristics by co-gasification of biomass and coal using an entrained flow gasifier. Journal of the Energy Institute, 2021, 95, 166-178.	5.3	31
22	Ultrafast surfactant-templating of *BEA zeolite: An efficient catalyst for the cracking of polyethylene pyrolysis vapours. Chemical Engineering Journal, 2021, 412, 128566.	12.7	16
23	Gasification kinetic modelling of Victorian brown coal chars and validity for entrained flow gasification in CO2. International Journal of Mining Science and Technology, 2021, 31, 473-481.	10.3	18
24	One-step peracetic acid pretreatment of hardwood and softwood biomass for platform chemicals production. Scientific Reports, 2021, 11, 11183.	3.3	43
25	Screen printed chipless RFID tags on packaging substrates. Flexible and Printed Electronics, 2021, 6, 025009.	2.7	8
26	A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel. Energies, 2021, 14, 4517.	3.1	3
27	Process modelling for the production of hydrogen-rich gas from gasification of coal using oxygen, CO2 and steam reactants. International Journal of Hydrogen Energy, 2021, 46, 24051-24059.	7.1	15
28	Pretreatment of Automotive Shredder Residues, Their Chemical Characterisation, and Pyrolysis Kinetics. Sustainability, 2021, 13, 10549.	3.2	5
29	Catalyst-induced enhancement of direct methane synthesis in solid oxide electrolyser. Electrochimica Acta, 2021, 391, 138934.	5.2	6
30	A Study on CO ₂ Hydrogenation Using a Ceria–Zirconia Mixed Oxide (Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂)-Supported Fe Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 14410-14423.	3.7	3
31	Co-Gasification Characteristics of Coal and Biomass Using CO2 Reactant under Thermodynamic Equilibrium Modelling. Energies, 2021, 14, 7384.	3.1	8
32	Modeling the Impact of Operating Variables on Ash Agglomeration in Chemical Looping Combustion of Solid Fuels. Industrial & amp; Engineering Chemistry Research, 2021, 60, 17970-17979.	3.7	2
33	Gasification of torrefied oil palm biomass in a fixed-bed reactor: Effects of gasifying agents on product characteristics. Journal of the Energy Institute, 2020, 93, 711-722.	5.3	42
34	A study on the performance of coke resistive cerium modified zeolite Y catalyst for the pyrolysis of scrap tyres in a two-stage fixed bed reactor. Waste Management, 2020, 102, 139-148.	7.4	29
35	Thermal and in situ infrared analysis to characterise the slow pyrolysis of mixed municipal solid waste (MSW) and its components. Renewable Energy, 2020, 148, 388-401.	8.9	18
36	Effect of elevated carbon dioxide and nitric oxide on the physiological responses of two green algae, Asterarcys quadricellulare and Chlorella sorokiniana. Journal of Applied Phycology, 2020, 32, 189-204.	2.8	18

#	Article	IF	CITATIONS
37	Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. Journal of Catalysis, 2020, 381, 415-426.	6.2	43
38	Cellulose fast pyrolysis for platform chemicals: assessment of potential targets and suitable reactor technology. Biofuels, Bioproducts and Biorefining, 2020, 14, 446-468.	3.7	17
39	Understanding dissolution characteristics of steel slag for resource recovery. Waste Management, 2020, 117, 179-187.	7.4	23
40	A Review on Synthesis of Methane as a Pathway for Renewable Energy Storage With a Focus on Solid Oxide Electrolytic Cell-Based Processes. Frontiers in Energy Research, 2020, 8, .	2.3	42
41	Investigations on charcoal as fuel for a refillable scandia-stabilised zirconia electrolyte-based tubular carbon fuel cell. Ionics, 2020, 26, 6207-6215.	2.4	Ο
42	Laboratory-Scale Performance of Pyrolysis of Unsegregated Municipal Solid Waste. Industrial & Engineering Chemistry Research, 2020, 59, 22656-22666.	3.7	6
43	One-pot synthesis of bio-fuel additives from glycerol and benzyl alcohol: Mesoporous MCM-41 supported iron (III) chloride as a highly efficient tandem catalyst. Renewable Energy, 2020, 156, 883-892.	8.9	14
44	Potential Chipless RFID Sensors for Food Packaging Applications: A Review. IEEE Sensors Journal, 2020, 20, 9618-9636.	4.7	70
45	Isothermal kinetic study of CO2 gasification of torrefied oil palm biomass. Biomass and Bioenergy, 2020, 134, 105487.	5.7	28
46	Steady state kinetic model for entrained flow CO gasification of biomass at high temperature. Energy, 2020, 196, 117073.	8.8	11
47	Rational design of thermogravimetric experiments to determine intrinsic char gasification kinetics. Proceedings of the Combustion Institute, 2019, 37, 3023-3031.	3.9	11
48	Mineral Transformation and Morphological Change during Pyrolysis and Gasification of Victorian Brown Coals in an Entrained Flow Reactor. Energy & Fuels, 2019, 33, 6134-6147.	5.1	17
49	Gasification characteristics of Bangladeshi Barapukurian coal in a high-temperature entrained flow gasifier under CO2 atmosphere. AIP Conference Proceedings, 2019, , .	0.4	5
50	Towards efficient calcium extraction from steel slag and carbon dioxide utilisation <i>via</i> pressure-swing mineral carbonation. Reaction Chemistry and Engineering, 2019, 4, 52-66.	3.7	25
51	The route towards sustainable production of ethylene glycol from a renewable resource, biodiesel waste: a review. Catalysis Science and Technology, 2019, 9, 567-577.	4.1	44
52	Synchrotron-Based Infra-Red Spectroscopic Insights on Thermo-Catalytic Conversion of Cellulosic Feedstock to Levoglucosenone and Furans. ACS Omega, 2019, 4, 8747-8757.	3.5	16
53	Optimization of reaction parameters for bio-oil production by catalytic pyrolysis of microalga Tetraselmis suecica: Influence of Ni-loading on the bio-oil composition. Renewable Energy, 2019, 142, 426-436.	8.9	17
54	Direct and two-step gasification behaviour of Victorian brown coals in an entrained flow reactor. Energy Conversion and Management, 2019, 195, 1044-1055.	9.2	31

#	Article	IF	CITATIONS
55	Effects of Char and Volatiles Extraction on the Performance of Dual Bed Pyrolysis Gasification System. Energy & Fuels, 2019, 33, 4877-4889.	5.1	2
56	Kinetics of steel slag dissolution: from experiments to modelling. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180830.	2.1	11
57	A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renewable and Sustainable Energy Reviews, 2019, 108, 481-497.	16.4	127
58	Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach. Waste Management, 2019, 90, 152-167.	7.4	64
59	Comparison of entrained flow CO2 gasification behaviour of three low-rank coals – Victorian brown coal, Beulah lignite, and Inner Mongolia lignite. Fuel, 2019, 249, 206-218.	6.4	23
60	Effects of gasification condition on the overall performance of methanol-electricity polygeneration system. Energy Conversion and Management, 2019, 184, 362-373.	9.2	18
61	Plastics—Villain or Hero? Polymers and Recycled Polymers in Mineral and Metallurgical Processing—A Review. Materials, 2019, 12, 655.	2.9	30
62	Chipless RFID Tags: Co- or Cross-Polar Tag?. , 2019, , .		17
63	Fate of a biomass particle during CO2 gasification: A mathematical model under entrained flow condition at high temperature. Energy, 2019, 168, 1045-1062.	8.8	17
64	Preliminary understanding on the ash behavior of algae during co-gasification in an entrained flow reactor. Fuel Processing Technology, 2018, 175, 26-34.	7.2	12
65	Thermodynamic evaluation of chemical looping based nitric oxide and hydrogen production. Chemical Engineering Research and Design, 2018, 132, 252-275.	5.6	4
66	Isolation and biochemical characterisation of two thermophilic green algal species- Asterarcys quadricellulare and Chlorella sorokiniana, which are tolerant to high levels of carbon dioxide and nitric oxide. Algal Research, 2018, 30, 28-37.	4.6	71
67	Evaluation of Sc2O3–CeO2–ZrO2 electrolyte-based tubular fuel cells using activated charcoal and hydrogen fuels. Electrochimica Acta, 2018, 259, 143-150.	5.2	17
68	Quality of bio-oil from catalytic pyrolysis of microalgae Chlorella vulgaris. Fuel, 2018, 223, 12-19.	6.4	139
69	Toward the Sustainable Synthesis of Propanols from Renewable Glycerol over MoO3-Al2O3 Supported Palladium Catalysts. Catalysts, 2018, 8, 385.	3.5	19
70	Vapour Phase Hydrogenolysis of Glycerol over NaY-Zeolite Supported Ru Catalysts for Targeted Selectivity towards 1,2-Propanediol. , 2018, , .		0
71	Entrained flow gasification behaviour of Victorian brown coal char at low temperature. Fuel, 2018, 234, 549-557.	6.4	19
72	Turning Biodiesel Waste Glycerol into 1,3-Propanediol: Catalytic Performance of Sulphuric acid-Activated Montmorillonite Supported Platinum Catalysts in Glycerol Hydrogenolysis. Scientific Reports, 2018, 8, 7484.	3.3	54

#	Article	IF	CITATIONS
73	Amine-based CO2 capture sorbents: A potential CO2 hydrogenation catalyst. Journal of CO2 Utilization, 2018, 26, 397-407.	6.8	30
74	Investigation of Two Hematites as Oxygen Carrier and Two Low-Rank Coals as Fuel in Chemical Looping Combustion. Energy & Fuels, 2017, 31, 1896-1903.	5.1	21
75	A study on growth and pyrolysis characteristics of microalgae using Thermogravimetric Analysis-Infrared Spectroscopy and synchrotron Fourier Transform Infrared Spectroscopy. Bioresource Technology, 2017, 229, 1-10.	9.6	45
76	Process simulation and exergy analysis of two nickel laterite processing technologies. International Journal of Mineral Processing, 2017, 161, 83-93.	2.6	10
77	Comparison of entrained flow gasification behaviour of Victorian brown coal and biomass. Fuel, 2017, 203, 942-953.	6.4	44
78	An experimental study on thermo-catalytic pyrolysis of plastic waste using a continuous pyrolyser. Waste Management, 2017, 67, 143-154.	7.4	52
79	The regulated coal sector and CO2 emissions in Indian growth process: Empirical evidence over half a century and policy suggestions. Applied Energy, 2017, 204, 667-678.	10.1	15
80	Investigation of functional group changes in biomass during slow pyrolysis using synchrotron based infra-red microspectroscopy and thermogravimetry-infra-red spectroscopy. Journal of Analytical and Applied Pyrolysis, 2017, 127, 394-401.	5.5	28
81	A life cycle assessment of a new laterite processing technology. Journal of Cleaner Production, 2017, 142, 1765-1777.	9.3	36
82	Gasification, DICE, and direct carbon fuel cells for power, fuels, and chemicals production from low rank coals. , 2017, , 217-237.		1
83	Kinetic study of torrefaction of oil palm shell, mesocarp and empty fruit bunch. Journal of Thermal Analysis and Calorimetry, 2016, 126, 709-715.	3.6	26
84	Catalytic gasification of carbon in a direct carbon fuel cell. Fuel, 2016, 180, 270-277.	6.4	42
85	Reactions and Transformations of Mineral and Nonmineral Inorganic Species during the Entrained Flow Pyrolysis and CO ₂ Gasification of Low Rank Coals. Energy & Fuels, 2016, 30, 3798-3808.	5.1	11
86	CO2 gasification behavior of biomass chars in an entrained flow reactor. Biomass Conversion and Biorefinery, 2016, 6, 49-59.	4.6	7
87	Performance of a Victorian brown coal and iron ore during chemical looping combustion in a 10 kWth alternating fluidized bed. Fuel, 2016, 183, 245-252.	6.4	15
88	Release behavior of Hg, Se, Cr and As during oxy-fuel combustion using Loy Yang brown coal in a bench-scale fluidized bed unit. Powder Technology, 2016, 302, 328-332.	4.2	14
89	Kinetics of Pyrolysis of Mixed Municipal Solid Waste-A Review. Procedia Environmental Sciences, 2016, 35, 513-527.	1.4	46
90	An alternative process for nitric oxide and hydrogen production using metal oxides. Chemical Engineering Research and Design, 2016, 112, 36-45.	5.6	8

#	Article	IF	CITATIONS
91	In-situ synchrotron IR study on surface functional group evolution of Victorian and Thailand low-rank coals during pyrolysis. Journal of Analytical and Applied Pyrolysis, 2016, 122, 122-130.	5.5	35
92	Intrinsic kinetics of CO2 gasification of a Victorian coal char. Journal of Thermal Analysis and Calorimetry, 2016, 123, 1685-1694.	3.6	18
93	Highâ€ŧemperature pyrolysis and CO ₂ gasification of Victorian brown coal and Rhenish lignite in an entrained flow reactor. AICHE Journal, 2016, 62, 2101-2111.	3.6	38
94	Exergy efficiency improvement in hydrogen production process by recovery of chemical energy versus thermal energy. Clean Technologies and Environmental Policy, 2016, 18, 1391-1404.	4.1	8
95	Dilute alkaline pretreatment for reducing sugar production from Tetraselmis suecica and Chlorella sp. biomass. Process Biochemistry, 2016, 51, 1757-1766.	3.7	40
96	In situ high-temperature powder diffraction studies of solid oxide electrolyte direct carbon fuel cell materials in the presence of brown coal. Journal of Materials Science, 2016, 51, 3928-3940.	3.7	1
97	Ash characteristics during oxy-fuel fluidized bed combustion of a Victorian brown coal. Powder Technology, 2016, 288, 1-5.	4.2	25
98	Combustion of single char particles from Victorian brown coal under oxy-fuel fluidized bed conditions. Fuel, 2016, 165, 477-483.	6.4	37
99	The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 2016, 162, 733-741.	10.1	1,007
100	Kinetics of CO 2 and steam gasification of Victorian brown coal chars. Chemical Engineering Journal, 2016, 285, 331-340.	12.7	131
101	Attrition of Victorian brown coal during drying in a fluidized bed. Drying Technology, 2016, 34, 793-801.	3.1	14
102	Catalytic pyrolysis of microalgae Tetraselmis suecica and characterization study using in situ Synchrotron-based Infrared Microscopy. Fuel, 2015, 161, 345-354.	6.4	57
103	Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal. Fuel, 2015, 154, 107-113.	6.4	35
104	The temperature-dependent release of volatile inorganic species from Victorian brown coals and German lignites under CO2 and H2O gasification conditions. Fuel, 2015, 158, 72-80.	6.4	14
105	Direct Carbon Fuel Cell Operation on Brown Coal with a Ni-GDC-YSZ Anode. Electrochimica Acta, 2015, 178, 721-731.	5.2	32
106	Use of synthetic oxygen carriers for Chemical Looping Combustion of Victorian brown coal. Proceedings of the Combustion Institute, 2015, 35, 3619-3627.	3.9	9
107	CO ₂ Gasification Kinetics of Algal and Woody Char Procured under Different Pyrolysis Conditions and Heating Rates. ACS Sustainable Chemistry and Engineering, 2015, 3, 365-373.	6.7	32
108	The role of technology on the dynamics of coal consumption–economic growth: New evidence from China. Applied Energy, 2015, 154, 686-695.	10.1	102

#	Article	IF	CITATIONS
109	Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier. Applied Energy, 2015, 157, 304-313.	10.1	105
110	Coupling of a distributed activation energy model with particle simulation for entrained flow pyrolysis of biomass. Fuel Processing Technology, 2015, 137, 131-138.	7.2	15
111	Use of Pyrite Cinder as an Iron-Based Oxygen Carrier in Coal-Fueled Chemical Looping Combustion. Energy & Fuels, 2015, 29, 2645-2655.	5.1	35
112	Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal. Electrochimica Acta, 2014, 143, 278-290.	5.2	30
113	Nitrogen Oxides, Sulfur Trioxide, and Mercury Emissions during Oxy-fuel Fluidized Bed Combustion of Victorian Brown Coal. Environmental Science & Technology, 2014, 48, 14844-14850.	10.0	43
114	Oxy-fuel fluidized bed combustion using Victorian brown coal: An experimental investigation. Fuel Processing Technology, 2014, 117, 23-29.	7.2	41
115	In situ synchrotron IR study relating temperature and heating rate to surface functional group changes in biomass. Bioresource Technology, 2014, 151, 36-42.	9.6	48
116	Comparison of CO2 and steam gasification reactivity of algal and woody biomass chars. Fuel Processing Technology, 2014, 117, 44-52.	7.2	45
117	Direct carbon fuel cell operation on brown coal. Applied Energy, 2014, 120, 56-64.	10.1	82
118	A kinetic study of microwave and fluidized-bed drying of a Chinese lignite. Chemical Engineering Research and Design, 2014, 92, 54-65.	5.6	130
119	Thermogravimetric analysis and kinetic characterization of lipid-extracted Tetraselmis suecica and Chlorella sp Algal Research, 2014, 6, 39-45.	4.6	39
120	In situ studies of structural changes in DME synthesis catalyst with synchrotron powder diffraction. Applied Catalysis A: General, 2014, 486, 49-54.	4.3	4
121	Experimental investigation of fluidized bed chemical looping combustion of Victorian brown coal using hematite. Journal of Environmental Chemical Engineering, 2014, 2, 1642-1654.	6.7	3
122	Influence of Temperature on the Release of Inorganic Species from Victorian Brown Coals and German Lignites under CO ₂ Gasification Conditions. Energy & Fuels, 2014, 28, 6289-6298.	5.1	13
123	Cost-benefit analysis of different hydrogen production technologies using AHP and Fuzzy AHP. International Journal of Hydrogen Energy, 2014, 39, 15293-15306.	7.1	67
124	Determination and Comparison of CuO Reduction/Oxidation Kinetics in CLC Experiments with CO/Air by the Shrinking Core Model and Its Characterization. Energy & 2014, 2014, 28, 3495-3510.	5.1	12
125	Application of the self-heat recuperation technology for energy saving in biomass drying system. Fuel Processing Technology, 2014, 117, 66-74.	7.2	40
126	Dimethyl ether synthesis from Victorian brown coal through gasification – Current status, and research and development needs. Progress in Energy and Combustion Science, 2013, 39, 577-605.	31.2	70

#	Article	IF	CITATIONS
127	Thermogravimetric study of the combustion of Tetraselmis suecica microalgae and its blend with a Victorian brown coal in O2/N2 and O2/CO2 atmospheres. Bioresource Technology, 2013, 150, 15-27.	9.6	93
128	Comparison of Superheated Steam and Air Fluidized-Bed Drying Characteristics of Victorian Brown Coals. Energy & Fuels, 2013, 27, 6598-6606.	5.1	26
129	Sulfur Emission from Victorian Brown Coal Under Pyrolysis, Oxy-Fuel Combustion and Gasification Conditions. Environmental Science & amp; Technology, 2013, 47, 1729-1734.	10.0	55
130	Master curve behaviour in superheated steam drying of small porous particles. Applied Thermal Engineering, 2013, 52, 460-467.	6.0	12
131	Performance of Fe2O3/CaSO4 composite oxygen carrier on inhibition of sulfur release in calcium-based chemical looping combustion. International Journal of Greenhouse Gas Control, 2013, 17, 1-12.	4.6	44
132	Fermentable Sugars from Lignocellulosic Biomass: Technical Challenges. , 2013, , 3-27.		6
133	Prediction of distribution of trace elements under Oxy-fuel combustion condition using Victorian brown coals. Fuel, 2013, 114, 135-142.	6.4	55
134	Pyrolysis kinetics and reactivity of algae–coal blends. Biomass and Bioenergy, 2013, 55, 291-298.	5.7	70
135	Process modelling of dimethyl ether production from Victorian brown coal—Integrating coal drying, gasification and synthesis processes. Computers and Chemical Engineering, 2013, 48, 96-104.	3.8	37
136	Chemical looping combustion (CLC) of two Victorian brown coals – Part 1: Assessment of interaction between CuO and minerals inherent in coals during single cycle experiment. Fuel, 2013, 104, 262-274.	6.4	19
137	Chemical Structure Changes Accompanying Fluidized-Bed Drying of Victorian Brown Coals in Superheated Steam, Nitrogen, and Hot Air. Energy & Fuels, 2013, 27, 154-166.	5.1	83
138	Thermogravimetric study and modeling for the drying of a Chinese lignite. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 793-803.	1.5	24
139	Study of Chemical Structure Changes of Chinese Lignite upon Drying in Superheated Steam, Microwave, and Hot Air. Energy & Fuels, 2012, 26, 3651-3660.	5.1	180
140	Fuel Particle Conversion of Pulverized Biomass during Pyrolysis in an Entrained Flow Reactor. Industrial & Engineering Chemistry Research, 2012, 51, 13973-13979.	3.7	40
141	Review of Fuels for Direct Carbon Fuel Cells. Energy & Fuels, 2012, 26, 1471-1488.	5.1	148
142	Pressurized chemical-looping combustion of coal using an iron ore as oxygen carrier in a pilot-scale unit. International Journal of Greenhouse Gas Control, 2012, 10, 363-373.	4.6	130
143	Chemical Looping Combustion (CLC) of two Victorian brown coals – Part 2: Assessment of interaction between CuO and minerals inherent in coals during multi cycle experiments. Fuel, 2012, 96, 335-347.	6.4	22
144	Chemical looping combustion of low-ash and high-ash low rank coals using different metal oxides – A thermogravimetric analyser study. Fuel, 2012, 97, 137-150.	6.4	16

#	Article	IF	CITATIONS
145	Application of the distributed activation energy model to the kinetic study of pyrolysis of the fresh water algae Chlorococcum humicola. Bioresource Technology, 2012, 107, 476-481.	9.6	55
146	Use of Fe ₂ O ₃ -Containing Industrial Wastes As the Oxygen Carrier for Chemical-Looping Combustion of Coal: Effects of Pressure and Cycles. Energy & Fuels, 2011, 25, 4357-4366.	5.1	54
147	Effect of Coal Drying on the Behavior of Inorganic Species during Victorian Brown Coal Pyrolysis and Combustion. Energy & amp; Fuels, 2011, 25, 2764-2771.	5.1	16
148	Comparison of CuO and NiO as oxygen carrier in chemical looping combustion of a Victorian brown coal. International Journal of Hydrogen Energy, 2011, 36, 12048-12057.	7.1	43
149	Experimental investigation of the combustion of bituminous coal in air and O2/CO2 mixtures: 2. Variation of the transformation behaviour of mineral matter with bulk gas composition. Fuel, 2011, 90, 1361-1369.	6.4	18
150	Ash partitioning during the oxy–fuel combustion of lignite and its dependence on the recirculation of flue gas impurities (H2O, HCl and SO2). Fuel, 2011, 90, 2207-2216.	6.4	30
151	Chemical looping combustion of Victorian brown coal using NiO oxygen carrier. International Journal of Hydrogen Energy, 2011, 36, 3253-3259.	7.1	26
152	Evolution of organically bound metals during coal combustion in air and O2/CO2 mixtures: A case study of Victorian brown coal. Proceedings of the Combustion Institute, 2011, 33, 2795-2802.	3.9	15
153	In-situ observation of the combustion of air-dried and wet Victorian brown coal. Proceedings of the Combustion Institute, 2011, 33, 1739-1746.	3.9	43
154	Experimental Investigation of the Combustion of Bituminous Coal in Air and O ₂ /CO ₂ Mixtures: 1. Particle Imaging of the Combustion of Coal and Char. Energy & Fuels, 2010, 24, 4803-4811.	5.1	19
155	Characteristics and composition of lignites and boiler ashes and their relation to slagging: The case of Mae Moh PCC boilers. Fuel, 2009, 88, 116-123.	6.4	33
156	Gasification Performance of Australian Lignites in a Pressurized Fluidized Bed Gasifier Process Development Unit Under Air and Oxygen-enriched Air Blown Conditions. Chemical Engineering Research and Design, 2006, 84, 453-460.	5.6	26
157	Combination of thermochemical recuperative coal gasification cycle and fuel cell for power generation. Fuel, 2005, 84, 1019-1021.	6.4	94
158	An Overview of Advanced Power generation Technologies Using Brown Coal. , 2004, , 360-400.		3
159	Spectral Emittance of Particulate Ash-Like Deposits: Theoretical Predictions Compared to Experimental Measurement. Journal of Heat Transfer, 2004, 126, 286-289.	2.1	7
160	Energy recuperation in solid oxide fuel cell (SOFC) and gas turbine (GT) combined system. Journal of Power Sources, 2003, 117, 7-13.	7.8	87
161	Control of Agglomeration and Defluidization Burning High-Alkali, High-Sulfur Lignites in a Small Fluidized Bed CombustorEffect of Additive Size and Type, and the Role of Calcium. Energy & Fuels, 2003, 17, 1014-1021.	5.1	46
162	Combinations of solid oxide fuel cell and several enhanced gas turbine cycles. Journal of Power Sources, 2003, 124, 65-75.	7.8	94

#	Article	IF	CITATIONS
163	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel, 2002, 81, 151-158.	6.4	185
164	A theoretical investigation of the influence of optical constants and particle size on the radiative properties and heat transfer involving ash clouds and deposits. Chemical Engineering and Processing: Process Intensification, 2000, 39, 471-483.	3.6	27
165	Apparent emittance of non-isothermal particulate deposits. International Communications in Heat and Mass Transfer, 1999, 26, 771-780.	5.6	4
166	Development of emittance of coal particles during devolatilisation and burnoff. Fuel, 1999, 78, 511-519.	6.4	31
167	A study on the importance of dependent radiative effects in determining the spectral and total emittance of particulate ash deposits in pulverised fuel fired furnaces. Chemical Engineering and Processing: Process Intensification, 1997, 36, 423-432.	3.6	16
168	An analysis of the angular scatter measurement to determine the optical constants of coal and ashy materials. International Communications in Heat and Mass Transfer, 1996, 23, 809-821.	5.6	5
169	The character of ash deposits and the thermal performance of furnaces. Fuel Processing Technology, 1995, 44, 143-153.	7.2	43
170	Discussion: "Measurement of Radiative Properties of Ash and Slag by FT-IR Emission and Reflection Spectroscopy―(Markham, J. R., Best, P. E., Solomon, P. R., and Yu, Z. Z., 1992, ASME J. Heat Transfer, 114, pp.) T	ј छ . Qq0 0	0ogBT /Ovei

171	The properties and thermal effects of ash deposits in coal-fired furnaces. Progress in Energy and Combustion Science, 1993, 19, 487-504.	31.2	93
172	Co-slagging characteristics of coal and biomass ashes considering entrained flow slagging gasifier. Biomass Conversion and Biorefinery, 0, , 1.	4.6	2