Beatrice S Knudsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6027433/publications.pdf

Version: 2024-02-01

76 papers 10,955 citations

35 h-index 79644 **73** g-index

84 all docs

84 docs citations

84 times ranked 18719 citing authors

#	Article	IF	CITATIONS
1	Significant changes in macrophage and CD8 T cell densities in primary prostate tumors 2 weeks after SBRT. Prostate Cancer and Prostatic Diseases, 2023, 26, 207-209.	2.0	8
2	Receptor-interacting protein kinase 2 (RIPK2) stabilizes c-Myc and is a therapeutic target in prostate cancer metastasis. Nature Communications, 2022, 13, 669.	5.8	19
3	The Movember Global Action Plan 1 (GAP1): Unique Prostate Cancer Tissue Microarray Resource. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 715-727.	1.1	O
4	The intraprostatic immune environment after stereotactic body radiotherapy is dominated by myeloid cells. Prostate Cancer and Prostatic Diseases, 2021, 24, 135-139.	2.0	11
5	Centrosome loss results in an unstable genome and malignant prostate tumors. Oncogene, 2020, 39, 399-413.	2.6	21
6	Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images. Diagnostic Pathology, 2020, 15, 100.	0.9	35
7	Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC Medical Genetics, 2020, 21, 167.	2.1	2
8	Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential. BMC Cancer, 2020, 20, 398.	1.1	13
9	Phase 1 Trial of Stereotactic Body Radiation Therapy Neoadjuvant to Radical Prostatectomy for Patients With High-Risk Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2020, 108, 930-935.	0.4	12
10	A method of quantifying centrosomes at the single-cell level in human normal and cancer tissue. Molecular Biology of the Cell, 2019, 30, 811-819.	0.9	12
11	A Circulating Tumor Cell-RNA Assay for Assessment of Androgen Receptor Signaling Inhibitor Sensitivity in Metastatic Castration-Resistant Prostate Cancer. Theranostics, 2019, 9, 2812-2826.	4.6	20
12	Integrin α6β4E variant is associated with actin and CD9 structures and modifies the biophysical properties of cell–cell and cell–extracellular matrix interactions. Molecular Biology of the Cell, 2019, 30, 838-850.	0.9	8
13	Convolutional neural networks can accurately distinguish four histologic growth patterns of lung adenocarcinoma in digital slides. Scientific Reports, 2019, 9, 1483.	1.6	135
14	Effect of Preanalytic Variables on an Automated PTEN Immunohistochemistry Assay for Prostate Cancer. Archives of Pathology and Laboratory Medicine, 2019, 143, 338-348.	1.2	7
15	Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images. IEEE Transactions on Medical Imaging, 2019, 38, 945-954.	5.4	80
16	Regulation of inside-out \hat{l}^21 -integrin activation by CDCP1. Oncogene, 2018, 37, 2817-2836.	2.6	17
17	Clonal diversity revealed by morphoproteomic and copy number profiles of single prostate cancer cells at diagnosis. Convergent Science Physical Oncology, 2018, 4, 015003.	2.6	23
18	ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nature Medicine, 2018, 24, 1887-1898.	15.2	113

#	Article	IF	CITATIONS
19	Spatial Mapping of Myeloid Cells and Macrophages by Multiplexed Tissue Staining. Frontiers in Immunology, 2018, 9, 2925.	2.2	32
20	Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential. Cancer Research, 2018, 78, 6086-6097.	0.4	49
21	An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies. Computerized Medical Imaging and Graphics, 2018, 69, 125-133.	3.5	46
22	Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Molecular Cancer Research, 2018, 16, 1319-1331.	1.5	13
23	A Non-integrating Lentiviral Approach Overcomes Cas9-Induced Immune Rejection to Establish an Immunocompetent Metastatic Renal Cancer Model. Molecular Therapy - Methods and Clinical Development, 2018, 9, 203-210.	1.8	27
24	A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors. Nature Genetics, 2018, 50, 979-989.	9.4	168
25	Impact of treatment on progression to castrationâ€resistance, metastases, and death in men with localized highâ€grade prostate cancer. Cancer Medicine, 2017, 6, 163-172.	1.3	16
26	A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome. Scientific Reports, 2017, 7, 13190.	1.6	28
27	High-throughput sequencing of two populations of extracellular vesicles provides an mRNA signature that can be detected in the circulation of breast cancer patients. RNA Biology, 2017, 14, 305-316.	1.5	43
28	Characterization of Laminin Binding Integrin Internalization in Prostate Cancer Cells. Journal of Cellular Biochemistry, 2017, 118, 1038-1049.	1.2	19
29	Data integration from pathology slides for quantitative imaging of multiple cell types within the tumor immune cell infiltrate. Diagnostic Pathology, 2017, 12, 69.	0.9	25
30	A Multi-scale U-Net for Semantic Segmentation of Histological Images from Radical Prostatectomies. AMIA Annual Symposium proceedings, 2017, 2017, 1140-1148.	0.2	16
31	Quantitative imaging for development of companion diagnostics to drugs targeting HGF/MET. Journal of Pathology: Clinical Research, 2016, 2, 210-222.	1.3	16
32	The Cohesive Metastasis Phenotype in Human Prostate Cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 221-231.	3.3	28
33	A basal cell defect promotes budding of prostatic intraepithelial neoplasia. Journal of Cell Science, 2016, 130, 104-110.	1.2	17
34	Integrated Classification of Prostate Cancer Reveals a Novel Luminal Subtype with Poor Outcome. Cancer Research, 2016, 76, 4948-4958.	0.4	147
35	Application of a Clinical Whole-Transcriptome Assay for Staging and Prognosis of Prostate Cancer Diagnosed in Needle Core Biopsy Specimens. Journal of Molecular Diagnostics, 2016, 18, 395-406.	1.2	46
36	Neoadjuvant dasatinib for muscle-invasive bladder cancer with tissue analysis of biologic activity. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 4.e11-4.e17.	0.8	14

#	Article	IF	Citations
37	Rapid 3-D delineation of cell nuclei for high-content screening platforms. Computers in Biology and Medicine, 2016, 69, 328-338.	3.9	24
38	Keratin 13 Is Enriched in Prostate Tubule-Initiating Cells and May Identify Primary Prostate Tumors that Metastasize to the Bone. PLoS ONE, 2016, 11, e0163232.	1.1	35
39	Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Letters, 2015, 367, 89-92.	3.2	59
40	Regulation of microtubule dynamics by DIAPH3 influences amoeboid tumor cell mechanics and sensitivity to taxanes. Scientific Reports, 2015, 5, 12136.	1.6	48
41	Computerized delineation of nuclei in liquid-based Pap smears stained with immunohistochemical biomarkers., 2015, 88, 110-119.		2
42	Machine learning approaches to analyze histological images of tissues from radical prostatectomies. Computerized Medical Imaging and Graphics, 2015, 46, 197-208.	3.5	85
43	Hypoxia after transarterial chemoembolization may trigger a progenitor cell phenotype in hepatocellular carcinoma. Histopathology, 2015, 67, 442-450.	1.6	46
44	Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis. Diagnostic Pathology, 2014, 9, 213.	0.9	33
45	Computerized delineation of nuclei in liquid-based pap smears stained with immunohistochemical biomarkers., 2014,, n/a-n/a.		2
46	Tumour cell survival mechanisms in lethal metastatic prostate cancer differ between bone and soft tissue metastases. Journal of Pathology, 2013, 230, 291-297.	2.1	34
47	Statistical methods for tissue array images—algorithmic scoring and co-training. Annals of Applied Statistics, 2012, 6, 1280-1305.	0.5	10
48	Metastatic Progression of Prostate Cancer and E-Cadherin. American Journal of Pathology, 2011, 179, 400-410.	1.9	133
49	DNA Methylation Profiles of Ovarian Epithelial Carcinoma Tumors and Cell Lines. PLoS ONE, 2010, 5, e9359.	1.1	80
50	E-cadherin-mediated survival of androgen-receptor-expressing secretory prostate epithelial cells derived from a stratified in vitro differentiation model. Journal of Cell Science, 2010, 123, 266-276.	1.2	45
51	Differential Gene Expression in Benign Prostate Epithelium of Men with and without Prostate Cancer: Evidence for a Prostate Cancer Field Effect. Clinical Cancer Research, 2010, 16, 5414-5423.	3.2	42
52	Mechanisms of Prostate Cancer Initiation and Progression. Advances in Cancer Research, 2010, 109, 1-50.	1.9	54
53	Repertoire of microRNAs in Epithelial Ovarian Cancer as Determined by Next Generation Sequencing of Small RNA cDNA Libraries. PLoS ONE, 2009, 4, e5311.	1.1	223
54	A Novel Multipurpose Monoclonal Antibody for Evaluating Human c-Met Expression in Preclinical and Clinical Settings. Applied Immunohistochemistry and Molecular Morphology, 2009, 17, 57-67.	0.6	38

#	Article	IF	CITATIONS
55	Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10513-10518.	3.3	7,047
56	Showering c-MET-dependent cancers with drugs. Current Opinion in Genetics and Development, 2008, 18, 87-96.	1.5	131
57	Spectral Analysis of Multiplex Raman Probe Signatures. ACS Nano, 2008, 2, 2306-2314.	7.3	191
58	Evaluation of the Branched-Chain DNA Assay for Measurement of RNA in Formalin-Fixed Tissues. Journal of Molecular Diagnostics, 2008, 10, 169-176.	1.2	44
59	Inhibition of Integrin-mediated Crosstalk with Epidermal Growth Factor Receptor/Erk or Src Signaling Pathways in Autophagic Prostate Epithelial Cells Induces Caspase-independent Death. Molecular Biology of the Cell, 2007, 18, 2481-2490.	0.9	71
60	Regulation of global gene expression in the bone marrow microenvironment by androgen: Androgen ablation increases insulinâ€like growth factor binding proteinâ€5 expression. Prostate, 2007, 67, 1621-1629.	1.2	18
61	A Working Group Classification of Focal Prostate Atrophy Lesions. American Journal of Surgical Pathology, 2006, 30, 1281-1291.	2.1	123
62	Regulation of cell proliferation in a stratified culture system of epithelial cells from prostate tissue. Cell and Tissue Research, 2006, 325, 263-276.	1.5	7
63	The impact of cell adhesion changes on proliferation and survival during prostate cancer development and progression. Journal of Cellular Biochemistry, 2006, 99, 345-361.	1.2	38
64	Nuclear Imaging of Met-Expressing Human and Canine Cancer Xenografts with Radiolabeled Monoclonal Antibodies (MetSeekTM). Clinical Cancer Research, 2005, 11, 7064s-7069s.	3.2	20
65	Proliferation and invasion: Plasticity in tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10528-10533.	3.3	163
66	Regulation of Hepatocyte Activator Inhibitor-1 Expression by Androgen and Oncogenic Transformation in the Prostate. American Journal of Pathology, 2005, 167, 255-266.	1.9	12
67	Prostate Cancer and the Met Hepatocyte Growth Factor Receptor. Advances in Cancer Research, 2004, 91, 31-67.	1.9	76
68	Basal prostate epithelial cells stimulate the migration of prostate cancer cells. Molecular Carcinogenesis, 2004, 41, 85-97.	1.3	23
69	Syndecan-1 expression in locally invasive and metastatic prostate cancer. Urology, 2004, 63, 402-407.	0.5	42
70	Regulation of migration of primary prostate epithelial cells by secreted factors from prostate stromal cells. Experimental Cell Research, 2003, 288, 246-256.	1.2	26
71	High expression of the Met receptor in prostate cancer metastasis to bone. Urology, 2002, 60, 1113-1117.	0.5	157
72	Normal and Malignant Prostate Epithelial Cells Differ in Their Response to Hepatocyte Growth Factor/Scatter Factor. American Journal of Pathology, 2001, 159, 579-590.	1.9	86

#	Article	IF	CITATIONS
73	BCL-2 AND P53 EXPRESSION IN CLINICALLY LOCALIZED PROSTATE CANCER PREDICTS RESPONSE TO EXTERNAL BEAM RADIOTHERAPY. Journal of Urology, 1999, 162, 12-17.	0.2	115
74	Development of highly selective SH3 binding peptides for Crk and CRKL which disrupt Crk-complexes with DOCK180, SoS and C3G. Oncogene, 1998, 16, 1903-1912.	2.6	78
7 5	Physiological signals and oncogenesis mediated through Crk family adapter proteins. , 1998, 177, 535-552.		121
76	The SH3 Domain of Crk Binds Specifically to a Conserved Proline-rich Motif in Eps15 and Eps15R. Journal of Biological Chemistry, 1995, 270, 15341-15347.	1.6	85