
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602735/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nature Communications, 2016, 7, 11470.	5.8	310
2	Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell. Electrochimica Acta, 2012, 82, 493-511.	2.6	245
3	Catalysis of Nickel Ferrite for Photocatalytic Water Oxidation Using [Ru(bpy) ₃] ²⁺ and S ₂ 0 ₈ ^{2–} . Journal of the American Chemical Society, 2012, 134, 19572-19575.	6.6	243
4	Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation. Energy and Environmental Science, 2012, 5, 7606.	15.6	208
5	Cu/Co ₃ O ₄ Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis. Journal of Physical Chemistry C, 2010, 114, 16456-16462.	1.5	191
6	Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts. Energy and Environmental Science, 2011, 4, 2754.	15.6	169
7	Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?. Inorganic Chemistry, 2013, 52, 9522-9531.	1.9	164
8	Efficient water oxidation by cerium ammonium nitrate with [Ir ^{III} (Cp*)(4,4′-bishydroxy-2,2′-bipyridine)(H ₂ O)] ²⁺ as a precatalyst. Energy and Environmental Science, 2012, 5, 5708-5716.	15.6	145
9	Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell. Chemical Communications, 2010, 46, 7334.	2.2	135
10	Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions. Energy and Environmental Science, 2011, 4, 2822.	15.6	131
11	High and robust performance of H ₂ O ₂ fuel cells in the presence of scandium ion. Energy and Environmental Science, 2015, 8, 1698-1701.	15.6	112
12	LaCoO3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate. Physical Chemistry Chemical Physics, 2012, 14, 5753.	1.3	109
13	Photocatalytic Hydrogen Evolution under Highly Basic Conditions by Using Ru Nanoparticles and 2-Phenyl-4-(1-naphthyl)quinolinium Ion. Journal of the American Chemical Society, 2011, 133, 16136-16145.	6.6	98
14	Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and a Cobalt(II) Chlorin Complex. ACS Energy Letters, 2016, 1, 913-919.	8.8	98
15	Size―and Shapeâ€Dependent Activity of Metal Nanoparticles as Hydrogenâ€Evolution Catalysts: Mechanistic Insights into Photocatalytic Hydrogen Evolution. Chemistry - A European Journal, 2011, 17, 2777-2785.	1.7	97
16	Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst. Energy and Environmental Science, 2012, 5, 6111.	15.6	89
17	Catalytic application of shape-controlled Cu ₂ O particles protected by Co ₃ O ₄ nanoparticles for hydrogen evolution from ammonia borane. Energy and Environmental Science, 2012, 5, 5356-5363.	15.6	88
18	Hydrogen Peroxide used as a Solar Fuel in Oneâ€Compartment Fuel Cells. ChemElectroChem, 2016, 3, 1978-1989.	1.7	84

#	Article	IF	CITATIONS
19	A Robust One ompartment Fuel Cell with a Polynuclear Cyanide Complex as a Cathode for Utilizing H ₂ O ₂ as a Sustainable Fuel at Ambient Conditions. Chemistry - A European Journal, 2013, 19, 11733-11741.	1.7	80
20	Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts. Journal of Physical Chemistry Letters, 2013, 4, 3458-3467.	2.1	77
21	Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction. Journal of Materials Chemistry, 2012, 22, 24284.	6.7	69
22	Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. Journal of Materials Chemistry A, 2015, 3, 12404-12412.	5.2	67
23	Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate. Chemistry - an Asian Journal, 2016, 11, 1138-1150.	1.7	67
24	Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catalysis Science and Technology, 2016, 6, 681-684.	2.1	66
25	High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Cobalt and Platinum Ions: Visibleâ€Light Driven Water Oxidation. Angewandte Chemie - International Edition, 2015, 54, 5613-5617.	7.2	63
26	Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. Journal of Colloid and Interface Science, 2017, 486, 46-57.	5.0	60
27	High Power Density of One-Compartment H ₂ O ₂ Fuel Cells Using Pyrazine-Bridged Fe[M ^C (CN) ₄] (M ^C = Pt ²⁺ and) Tj ETQq1 1	0 .7.9 4314	rg&T /Overic
28	Shape―and Sizeâ€Controlled Nanomaterials for Artificial Photosynthesis. ChemSusChem, 2013, 6, 1834-1847.	3.6	51
29	Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe ^{II} and Ru ^{II} Incorporated in Mesoporous Silica–Alumina. Inorganic Chemistry, 2016, 55, 5780-5786.	1.9	46
30	Catalytic activity of NiMnO3 for visible light-driven and electrochemical water oxidation. Physical Chemistry Chemical Physics, 2013, 15, 19125.	1.3	41
31	Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel. Chemical Communications, 2017, 53, 3473-3476.	2.2	37
32	Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen. Journal of Physical Chemistry A, 2013, 117, 3751-3760.	1.1	33
33	Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 10564.	1.3	32
34	Thermal and Photocatalytic Production of Hydrogen Peroxide and its Use in Hydrogen Peroxide Fuel Cells. Australian Journal of Chemistry, 2014, 67, 354.	0.5	32
35	High dimensional stability of LiCoMnO4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life. Electrochimica Acta, 2018, 260, 498-503.	2.6	32
36	Photocatalytic production of hydrogen peroxide by two-electron reduction of dioxygen with carbon-neutral oxalate using a 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst. Chemical Communications, 2012, 48, 8329.	2.2	30

#	Article	IF	CITATIONS
37	The long-lived electron transfer state of the 2-phenyl-4-(1-naphthyl)quinolinium ion incorporated into nanosized mesoporous silica–alumina acting as a robust photocatalyst in water. Chemical Communications, 2013, 49, 5132.	2.2	30
38	Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica–alumina. Chemical Communications, 2015, 51, 4662-4665.	2.2	30
39	Robustness of Ru/SiO ₂ as a Hydrogen-Evolution Catalyst in a Photocatalytic System Using an Organic Photocatalyst. Journal of Physical Chemistry C, 2013, 117, 13143-13152.	1.5	29
40	Photocatalytic H2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion. Journal of Photochemistry and Photobiology B: Biology, 2015, 152, 63-70.	1.7	28
41	Sustainable metal nano-contacts showing quantized conductance prepared at a gap of thin metal wires in solution. Chemical Communications, 2001, , 2170-2171.	2.2	27
42	Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen. RSC Advances, 2016, 6, 42041-42044.	1.7	26
43	Photocatalytic water oxidation by persulphate with a Ca ²⁺ ion-incorporated polymeric cobalt cyanide complex affording O ₂ with 200% quantum efficiency. Chemical Communications, 2017, 53, 3418-3421.	2.2	26
44	Impact of particle size of lithium manganese oxide on charge transfer resistance and contact resistance evaluated by electrochemical impedance analysis. Electrochimica Acta, 2020, 364, 137292.	2.6	26
45	Elucidating the Role of Oxide–Oxide/Carbon Interfaces of CuO _{<i>x</i>} –CeO ₂ /C in Boosting Electrocatalytic Performance. Langmuir, 2020, 36, 15141-15152.	1.6	25
46	Heterogeneous catalase-like activity of gold(<scp>i</scp>)–cobalt(<scp>iii</scp>) metallosupramolecular ionic crystals. Chemical Science, 2017, 8, 2671-2676.	3.7	22
47	Synergistic effects of Ni and Cu supported on TiO2 and SiO2 on photocatalytic H2 evolution with an electron donor–acceptor linked molecule. Catalysis Science and Technology, 2015, 5, 979-988.	2.1	19
48	Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals. Applied Catalysis B: Environmental, 2018, 237, 1124-1129.	10.8	19
49	Li ₂ Ni _{0.2} Co _{1.8} O ₄ having a spinel framework as a zero-strain positive electrode material for lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 13641-13649.	5.2	19
50	Unravelling the Role of Metallic Cu in Cu-CuFe ₂ O ₄ /C Nanohybrid for Enhanced Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 2020, 3, 3488-3496.	2.5	19
51	RuO ₂ Nanoparticle-Embedded Graphitic Carbon Nitride for Efficient Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2021, 4, 11700-11708.	2.4	17
52	A composite photocatalyst of an organic electron donor–acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid. Catalysis Science and Technology, 2015, 5, 428-437.	2.1	16
53	A Clue to High Rate Capability of Lithium-Ion Batteries Obtained by an Electrochemical Approach Using "Diluted―Electrode. Journal of the Electrochemical Society, 2018, 165, A3965-A3970.	1.3	16
54	Improvement of durability of an organic photocatalyst in p-xylene oxygenation by addition of a Cu(ii) complex. Physical Chemistry Chemical Physics, 2012, 14, 9654.	1.3	15

#	Article	IF	CITATIONS
55	Effect of surface acidity of cyano-bridged polynuclear metal complexes on the catalytic activity for the hydrolysis of organophosphates. Catalysis Science and Technology, 2018, 8, 4747-4756.	2.1	15
56	Hybrid H2-evolution catalysts: in situ formation of H2-evolution catalysts from metal salts inside the mesopores of silica–alumina supporting an organic photosensitiser. RSC Advances, 2013, 3, 25677.	1.7	13
57	Creation and stabilisation of tuneable open metal sites in thiocyanato-bridged heterometallic coordination polymers to be used as heterogeneous catalysts. Dalton Transactions, 2019, 48, 17063-17069.	1.6	12
58	Singleâ€Crystalâ€ŧoâ€Singleâ€Crystal Installation of Ln 4 (OH) 4 Cubanes in an Anionic Metallosupramolecular Framework. Angewandte Chemie - International Edition, 2020, 59, 18048-18053.	7.2	12
59	Enhancing the electrocatalytic activity via hybridization of Cu(I/II) oxides with Co3O4 towards oxygen electrode reactions. Journal of Power Sources, 2021, 490, 229511.	4.0	12
60	Cobalt opper Nanoparticles Catalyzed Selective Oxidation Reactions: Efficient Catalysis at Room Temperature. ChemistrySelect, 2018, 3, 9826-9832.	0.7	11
61	Utilization of core-shell nanoparticles to evaluate subsurface contribution to water oxidation catalysis of [Coll(H2O)2]1.5[CollI(CN)6] nanoparticles. Applied Catalysis B: Environmental, 2020, 262, 118101.	10.8	11
62	Ni–Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H ₂ evolution. RSC Advances, 2015, 5, 44912-44919.	1.7	10
63	Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8]O4 used as lithium-insertion electrodes by the diluted electrode method. Journal of Power Sources, 2019, 435, 226810.	4.0	10
64	Measurement of Side-Reaction Currents on Electrodes of Lithium-Ion Cells Using a Battery Cycler with a High-Precision Current Source. Electrochemistry, 2019, 87, 188-192.	0.6	10
65	Excitation energy transfer from non-aggregated molecules to perylenediimide nanoribbons via ionic interactions in water. Journal of Materials Chemistry, 2012, 22, 12547.	6.7	9
66	Nanofabrication of a Solid‣tate, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation. ChemPlusChem, 2016, 81, 521-525.	1.3	9
67	Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as Highâ€Performance Electrocatalyst for Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 3522-3529.	1.8	9
68	Rate capability of carbon-free lithium titanium oxide electrodes related to formation of electronic conduction paths observed by color change. Journal of Power Sources, 2019, 430, 150-156.	4.0	9
69	Reaction Mechanism and Kinetic Analysis of the Solid-State Reaction to Synthesize Single-Phase Li2Co2O4 Spinel. Journal of Physical Chemistry C, 2020, 124, 8170-8177.	1.5	9
70	Nonprecious Hybrid Metal Oxide for Bifunctional Oxygen Electrodes: Endorsing the Role of Interfaces in Electrocatalytic Enhancement. Energy & Fuels, 2021, 35, 13370-13381.	2.5	9
71	Comparative Measurements of Side-Reaction Currents of Li[Li1/3Ti5/3]O4 and Li[Li0.1Al0.1Mn1.8]O4 Electrodes in Lithium-Ion Cells and Symmetric Cells. Journal of the Electrochemical Society, 2019, 166, A3314-A3318.	1.3	8
72	Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction. Solid State Ionics, 2019, 343, 115077.	1.3	8

#	Article	IF	CITATIONS
73	Pd ₂ CuCo/C Hybrid with Nanoflower Morphology toward Oxygen Reduction and Formic Acid Oxidation Reactions: Experimental and Computational Studies. Energy & Fuels, 2021, 35, 11515-11524.	2.5	8
74	Laser-induced pinpoint hydrogen evolution from benzene and water using metal free single-walled carbon nanotubes with high quantum yields. Chemical Science, 2015, 6, 666-674.	3.7	7
75	Elucidation of the origin of voltage hysteresis in xLi2MnO3â^™(1â^'x)LiCoO2 using backstitch charge-discharge method. Electrochimica Acta, 2020, 334, 135623.	2.6	6
76	Single Open Sites on Fe ^{II} lons Stabilized by Coupled Metal lons in CN-Deficient Prussian Blue Analogues for High Catalytic Activity in the Hydrolysis of Organophosphates. Inorganic Chemistry, 2020, 59, 16000-16009.	1.9	6
77	Effect of Electronic Conductivity on the Polarization Behavior of Li[Li1/3Ti5/3]O4 Electrodes. Journal of the Electrochemical Society, 2021, 168, 070555.	1.3	5
78	Quantitative Analysis of Large Voltage Hysteresis of Lithium Excess Materials by Backstitch Charge and Discharge Method. Journal of the Electrochemical Society, 2018, 165, A2675-A2681.	1.3	4
79	Efficient capturing of hydrogen peroxide in dilute aqueous solution by co-crystallization with amino acids. CrystEngComm, 2021, 23, 5456-5462.	1.3	4
80	Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113753.	2.0	4
81	Electrocatalysts for Hydrogen Peroxide Reduction Used in Fuel Cells. Lecture Notes in Energy, 2018, , 141-168.	0.2	3
82	Mechanism for Catalytic Stability Enhancement of Fe ^{III} [Co ^{III} (CN) ₆] by Doping Divalent Ions for Organophosphate Hydrolysis. Journal of Physical Chemistry C, 2022, 126, 5564-5574.	1.5	3
83	Immobilization of Ir(OH)3 Nanoparticles in Mesospaces of Al-SiO2 Nanoparticles Assembly to Enhance Stability for Photocatalytic Water Oxidation. Catalysts, 2020, 10, 1015.	1.6	2
84	Voltage decay for lithium-excess material of Li[Li1/5Co2/5Mn2/5]O2 during cycling analyzed via backstitch method. Journal of Solid State Electrochemistry, 2022, 26, 1519-1526.	1.2	2
85	Enhanced catalytic stability of acid phosphatase immobilized in the mesospaces of a SiO2-nanoparticles assembly for catalytic hydrolysis of organophosphates. Molecular Catalysis, 2021, 510, 111669.	1.0	1
86	Synthesis Optimization of Electrochemically Active LiCoMnO ₄ for High-Voltage Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 13449-13456.	2.5	1
87	Heterogeneous Catalysis of Lanthanoid Ions for the Hydrolysis of <i>p</i> -Nitrophenyl Phosphate Enhanced by Incorporation to Cyano-Bridged Heterometallic Coordination Polymers. Journal of Physical Chemistry C, 2022, 126, 4365-4373.	1.5	1
88	Utilization of Polymeric Cyano-Bridged Metal Complexes as Heterogeneous Catalysts. Bulletin of Japan Society of Coordination Chemistry, 2016, 68, 16-28.	0.1	0
89	Singleâ€Crystalâ€toâ€Singleâ€Crystal Installation of Ln 4 (OH) 4 Cubanes in an Anionic Metallosupramolecular Framework. Angewandte Chemie, 2020, 132, 18204-18209.	1.6	0
90	Synthesis and electrochemical properties of a cubic polymorph of LiNi1/2Mn1/2O2 with a spinel framework. Journal of Solid State Electrochemistry, 2022, 26, 257.	1.2	0