Manushree Tanwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6027070/publications.pdf

Version: 2024-02-01

471371 501076 47 913 17 28 citations h-index g-index papers 47 47 47 361 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Polythiophene–PCBM-Based All-Organic Electrochromic Device: Fast and Flexible. ACS Applied Electronic Materials, 2019, 1, 58-63.	2.0	81
2	Prussian Blue-Cobalt Oxide Double Layer for Efficient All-Inorganic Multicolor Electrochromic Device. ACS Applied Electronic Materials, 2020, 2, 1768-1773.	2.0	68
3	Polythiophene-nanoWO ₃ bilayer as an electrochromic infrared filter: a transparent heat shield. Journal of Materials Chemistry C, 2020, 8, 1773-1780.	2.7	60
4	Prussian Blue-Viologen Inorganic–Organic Hybrid Blend for Improved Electrochromic Performance. ACS Applied Electronic Materials, 2019, 1, 892-899.	2.0	56
5	Nickel Cobalt Oxide Nanoneedles for Electrochromic Glucose Sensors. ACS Applied Nano Materials, 2021, 4, 2143-2152.	2.4	54
6	Quantifying the Short-Range Order in Amorphous Silicon by Raman Scattering. Analytical Chemistry, 2018, 90, 8123-8129.	3.2	47
7	Tracking Dynamic Doping in a Solid-State Electrochromic Device: Raman Microscopy Validates the Switching Mechanism. Analytical Chemistry, 2020, 92, 6088-6093.	3.2	38
8	Multi-walled carbon nanotubes doping for fast and efficient hybrid solid state electrochromic device. Applied Physics Letters, 2021, 118, .	1.5	37
9	Nano-cobalt oxide/viologen hybrid solid state device: Electrochromism beyond chemical cell. Applied Physics Letters, 2020, 116, .	1.5	36
10	MoS2 nano-flower incorporation for improving organic-organic solid state electrochromic device performance. Solar Energy Materials and Solar Cells, 2022, 236, 111502.	3.0	33
11	Pentafluorophenyl substituted fulleropyrrolidine: a molecule enabling the most efficient flexible electrochromic device with fast switching. Journal of Materials Chemistry C, 2021, 9, 3462-3469.	2.7	26
12	Mapping Longitudinal Inhomogeneity in Nanostructures Using Cross-Sectional Spatial Raman Imaging. Journal of Physical Chemistry C, 2020, 124, 6467-6471.	1.5	25
13	Raw hibiscus extract as redox active biomaterial for novel herbal electrochromic device. Solar Energy Materials and Solar Cells, 2020, 215, 110588.	3.0	21
14	Raman Spectroscopy as a Simple yet Effective Analytical Tool for Determining Fermi Energy and Temperature Dependent Fermi Shift in Silicon. Analytical Chemistry, 2022, 94, 1510-1514.	3.2	21
15	Unintended Deviation of Fermi Level from Band Edge in Fractal Silicon Nanostructures: Consequence of Dopants' Zonal Depletion. Journal of Physical Chemistry C, 2020, 124, 16675-16679.	1.5	19
16	Fano-Type Wavelength-Dependent Asymmetric Raman Line Shapes from MoS ₂ Nanoflakes. ACS Physical Chemistry Au, 2022, 2, 417-422.	1.9	19
17	Pseudo-Anomalous Size-Dependent Electron–Phonon Interaction in Graded Energy Band: Solving the Fano Paradox. Journal of Physical Chemistry Letters, 2021, 12, 2044-2051.	2.1	18
18	Prussian blueâ€based inorganic flexible electrochromism glucose sensor. IET Nanodielectrics, 2021, 4, 165-170.	2.0	18

#	Article	IF	CITATIONS
19	Effect of some physical perturbations and their interplay on Raman spectral line shapes in silicon: A brief review. Journal of Raman Spectroscopy, 2021, 52, 2100-2118.	1.2	17
20	Chronoamperometric deposition of transparent WO ₃ film for application as power efficient electrochromic auxiliary electrode. Journal Physics D: Applied Physics, 2022, 55, 365103.	1.3	16
21	Raman Spectromicroscopy: A Tool to "See―Subtle Aspects in Science, Technology, and Engineering. Journal of Physical Chemistry C, 2022, 126, 4733-4743.	1.5	15
22	Anharmonicity induced faster decay of hot phonons in rutile TiO ₂ nanorods: a Raman spectromicroscopy study. Materials Advances, 2022, 3, 1602-1608.	2.6	14
23	Bifunctional Application of Viologen-MoS ₂ -CNT/Polythiophene Device as Electrochromic Diode and Half-Wave Rectifier. ACS Materials Au, 2022, 2, 293-300.	2.6	14
24	Deconvoluting Diffuse Reflectance Spectra for Retrieving Nanostructures' Size Details: An Easy and Efficient Approach. Journal of Physical Chemistry A, 2019, 123, 3607-3614.	1.1	13
25	Chronopotentiometric Deposition of Nanocobalt Oxide for Electrochromic Auxiliary Active Electrode Application. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000173.	0.8	12
26	Predicting Raman line shapes from amorphous silicon clusters for estimating shortâ€range order. Journal of Raman Spectroscopy, 2021, 52, 2081-2088.	1.2	12
27	Size dependence of Raman line-shape parameters due to confined phonons in silicon nanowires. Advances in Materials and Processing Technologies, 2020, 6, 669-676.	0.8	11
28	MoS ₂ doping and concentration optimization for application-specific design of P3HT-viologen-based solid state electrochromic device. Journal Physics D: Applied Physics, 2022, 55, 375101.	1.3	11
29	Nonlinear Temperature-Dependent Phonon Decay in Heavily Doped Silicon: Predominant Interferon-Mediated Cold Phonon Annihilation. Journal of Physical Chemistry Letters, 2022, 13, 5232-5239.	2.1	9
30	Charge Storage Capabilities of Fractal Porous Silicon Obtained Using Simple Metal Assisted Porosification Method. Silicon, 2023, 15, 167-175.	1.8	9
31	Improved analytical framework for quantifying field emission from nanostructures. Materials Chemistry and Physics, 2020, 245, 122686.	2.0	8
32	Aloe Vera Flower Extract as a Botanical Resistive Memory Element: A Natural Memristor!. ACS Applied Electronic Materials, 2021, 3, 1556-1559.	2.0	8
33	Ultrafast carrier dynamics in a monolayer MoS ₂ at carrier densities well above Mott density. Journal of Physics Condensed Matter, 2022, 34, 155401.	0.7	8
34	Brain Tumour Detection and Grading Using Raman Scattering: Analogy from Semiconductors for Solving Biological Problem. Advances in Materials and Processing Technologies, 2020, , 1-12.	0.8	7
35	Electrochemically reduced graphene oxide/nano-WO\$\$_{3}\$\$ composite-based supercapacitor electrodes for better energy storage. European Physical Journal: Special Topics, 2022, 231, 2927-2932.	1.2	7
36	Generalisation of phonon confinement model for interpretation of Raman line-shape from nano-silicon. Advances in Materials and Processing Technologies, 2018, 4, 227-233.	0.8	6

#	Article	IF	CITATIONS
37	Low voltage colour modulation in hydrothermally grown Niâ€Co nanoneedles for electrochromic application. IET Nanodielectrics, 2021, 4, 75-80.	2.0	6
38	Hydrothermally grown nano-WO ₃ electrochromic film: structural and Raman spectroscopic study. Advances in Materials and Processing Technologies, 2022, 8, 970-976.	0.8	5
39	Inverse Size Dependent Fano Parameter in Silicon Porous Wires: Consequence of Quasi-Continuum Flattening. Journal of Physical Chemistry C, 2021, 125, 12767-12773.	1.5	5
40	Comparative Account of Biomolecular Changes Post Epstein Barr Virus Infection of the Neuronal and Glial Cells Using Raman Microspectroscopy. ACS Chemical Neuroscience, 2022, 13, 1627-1637.	1.7	5
41	Quantifying Size Dependent Electron Emission from Silicon Nanowires Array. Silicon, 2022, 14, 5585-5594.	1.8	4
42	A comparative study of ultrafast carrier dynamics near A, B, and C-excitons in a monolayer MoS2 at high excitation densities. Optical Materials, 2022, 126, 112224.	1.7	4
43	Early biomolecular changes in brain microvascular endothelial cells under Epstein–Barr virus influence: a Raman microspectroscopic investigation. Integrative Biology (United Kingdom), 2022, 14, 89-97.	0.6	4
44	Atypical Green Luminescence from Raw Cassia Siamea Extract: A Comparison with Red Emitting Tinospora Cordifolia. ACS Applied Bio Materials, 2021, 4, 5981-5986.	2.3	3
45	Improved ionic solid/viologen hybrid electrochromic device using preâ€bleached Prussianâ€blue electrode. IET Nanodielectrics, 2021, 4, 193-200.	2.0	2
46	Parallel or Interconnected Pores' Formation through Etchant Selective Silicon Porosification. Canadian Journal of Chemistry, 0, , .	0.6	1
47	Synthesizing Luminescent Carbon from Condensed Tobacco Smoke: Bio-Waste for Possible Bioimaging. Canadian Journal of Chemistry, 0, , .	0.6	0