
Cristina Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–biomolecule frameworks (BioMOFs): a novel approach for "green―optoelectronic applications. Chemical Communications, 2022, 58, 677-680.	2.2	7
2	Intramolecular charge transfer and molecular flexibility: Key parameters to be considered in the design of highly fluorescent p-phenylene vinylene derivatives. Dyes and Pigments, 2022, 199, 110105.	2.0	5
3	"Concentration-in-Control―self-assembly concept at the liquid–solid interface challenged. Chemical Science, 2021, 12, 13167-13176.	3.7	16
4	Novel Fluorescence Guanidine Molecules for Selective Sulfate Anion Detection in Water Complex Samples over a Wide pH Range. ACS Sensors, 2021, 6, 3224-3233.	4.0	10
5	Long-lived highly emissive MOFs as potential candidates for multiphotonic applications. Journal of Materials Chemistry C, 2021, 9, 15463-15469.	2.7	13
6	Highly luminescent silver-based MOFs: Scalable eco-friendly synthesis paving the way for photonics sensors and electroluminescent devices. Applied Materials Today, 2020, 21, 100817.	2.3	28
7	Tuning the Structural and Optoelectronic Properties of Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Single Crystals through Alkaliâ€Metal Substitution. Advanced Materials, 2020, 32, e2001878.	11.1	72
8	lodide mediated reductive decomposition of diazonium salts: towards mild and efficient covalent functionalization of surface-supported graphene. Nanoscale, 2020, 12, 11916-11926.	2.8	25
9	Electroluminescent Guest@MOF Nanoparticles for Thin Film Optoelectronics and Solid‣tate Lighting. Advanced Optical Materials, 2020, 8, 2000670.	3.6	31
10	The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative. Chemical Communications, 2020, 56, 4102-4105.	2.2	19
11	Anatomy of On-Surface Synthesized Boroxine Two-Dimensional Polymers. ACS Nano, 2020, 14, 2354-2365.	7.3	14
12	Tunable white emission of silver-sulfur-zeolites as single-phase LED phosphors. Methods and Applications in Fluorescence, 2020, 8, 024004.	1.1	9
13	Single-Step Synthesis of Dual Phase Bright Blue-Green Emitting Lead Halide Perovskite Nanocrystal Thin Films. Chemistry of Materials, 2019, 31, 6824-6832.	3.2	26
14	Thermal unequilibrium of strained black CsPbl ₃ thin films. Science, 2019, 365, 679-684.	6.0	444
15	Bipolar luminescent azaindole derivative exhibiting aggregation-induced emission for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 1222-1227.	2.7	9
16	Silver Zeolite Composite-Based LEDs: Origin of Electroluminescence and Charge Transport. ACS Applied Materials & amp; Interfaces, 2019, 11, 12179-12183.	4.0	14
17	Linear assembly of lead bromide-based nanoparticles inside lead(<scp>ii</scp>) polymers prepared by mixing the precursors of both the nanoparticle and the polymer. Chemical Communications, 2019, 55, 2968-2971.	2.2	6
18	Luminescent silver–lithium-zeolite phosphors for near-ultraviolet LED applications. Journal of Materials Chemistry C, 2019, 7, 14366-14374.	2.7	17

CRISTINA MARTIN

#	Article	IF	CITATIONS
19	5,10-Dihydrobenzo[<i>a</i>]indolo[2,3- <i>c</i>]carbazoles as Novel OLED Emitters. Journal of Physical Chemistry B, 2019, 123, 1400-1411.	1.2	13
20	New OLEDs Based on Zirconium Metalâ€Organic Framework. Advanced Optical Materials, 2018, 6, 1701060.	3.6	42
21	Femto-to nanosecond photodynamics of Nile Red in metal-ion exchanged faujasites. Microporous and Mesoporous Materials, 2018, 256, 214-226.	2.2	12
22	Perovskite-Based Devices: Photophysical Pathways in Highly Sensitive Cs2 AgBiBr6 Double-Perovskite Single-Crystal X-Ray Detectors (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870353.	11.1	8
23	Photophysical Pathways in Highly Sensitive Cs ₂ AgBiBr ₆ Doubleâ€Perovskite Singleâ€Crystal Xâ€Ray Detectors. Advanced Materials, 2018, 30, e1804450.	11.1	173
24	Promising Molecules for Optoelectronic Applications: Synthesis of 5,10â€Ðihydrobenzo[<i>a</i>]indolo[2,3â€ <i>c</i>]carbazoles by Scholl Reaction of 1,2â€Bis(indolâ€2â€yl)benzenes. European Journal of Organic Chemistry, 2018, 2018, 4683-4688.	1.2	9
25	Silver Zeolite Compositesâ€Based LEDs: A Novel Solidâ€State Lighting Approach. Advanced Functional Materials, 2017, 27, 1606411.	7.8	30
26	Simple Donor–Acceptor Luminogen Based on an Azaindole Derivative as Solid-State Emitter for Organic Light-Emitting Devices. ACS Energy Letters, 2017, 2, 2653-2658.	8.8	9
27	Selfâ€Assembling Azaindole Organogel for Organic Lightâ€Emitting Devices (OLEDs). Advanced Functional Materials, 2017, 27, 1702176.	7.8	15
28	Ultrafast and fast charge separation processes in real dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2016, 26, 1-30.	5.6	92
29	Unraveling the ultrafast behavior of nile red interacting with aluminum and titanium co-doped MCM41 materials. Physical Chemistry Chemical Physics, 2016, 18, 2152-2163.	1.3	12
30	Ultrafast Dynamics of Nile Red Interacting with Metal Doped Mesoporous Materials. Journal of Physical Chemistry C, 2015, 119, 13283-13296.	1.5	20
31	Complete Photodynamics of the Efficient YD2-o-C8-Based Solar Cell. Journal of Physical Chemistry C, 2014, 118, 29674-29687.	1.5	35
32	Location and freedom of single and double guest in dye-doped polymer nanoparticles. Photochemical and Photobiological Sciences, 2014, 13, 1580-1589.	1.6	7
33	Single and multistep energy transfer processes within doped polymer nanoparticles. Photochemical and Photobiological Sciences, 2014, 13, 1241-1252.	1.6	28
34	Ultrafast Dynamics of C30 in Solution and within CDs and HSA Protein. Journal of Physical Chemistry B, 2014, 118, 5760-5771.	1.2	12
35	Effect of Electrolyte Composition on Electron Injection and Dye Regeneration Dynamics in Complete Organic Dye Sensitized Solar Cells Probed by Time-Resolved Laser Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 26227-26238.	1.5	25
36	Ultrafast Photodynamics of Drugs in Nanocavities: Cyclodextrins and Human Serum Albumin Protein. Langmuir, 2012, 28, 6746-6759.	1.6	29

CRISTINA MARTIN

#	Article	IF	CITATIONS
37	Single Dye Molecule Behavior in Fluorescent Core–Shell Silica Nanoparticles. Chemistry of Materials, 2012, 24, 361-372.	3.2	29
38	Stability and Photodynamics of Lumichrome Structures in Water at Different pHs and in Chemical and Biological Caging Media. Journal of Physical Chemistry B, 2011, 115, 2424-2435.	1.2	32
39	Proton-Transfer Reaction Dynamics within the Human Serum Albumin Protein. Journal of Physical Chemistry B, 2011, 115, 7637-7647.	1.2	71
40	Femtosecond Dynamics and Photoconversion of a H-Bonded Dye within Mesoporous Silicate Materials. Journal of Physical Chemistry C, 2011, 115, 14687-14697.	1.5	8
41	Interfacial Electron Transfer Dynamics in a Solar Cell Organic Dye Anchored to Semiconductor Particle and Aluminum-Doped Mesoporous Materials. Journal of Physical Chemistry C, 2011, 115, 23183-23191.	1.5	45
42	Confined Photodynamics of an Organic Dye for Solar Cells Encapsulated in Titanium-Doped Mesoporous Molecular Materials. Journal of Physical Chemistry C, 2011, 115, 8858-8867.	1.5	13
43	Virtues and Vices of an Organic Dye and Ti-Doped MCM-41 Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 23642-23650.	1.5	25
44	Single molecule photobehavior of a chromophore interacting with silica-based nanomaterials. Physical Chemistry Chemical Physics, 2011, 13, 1819.	1.3	12
45	Interrogating Confined Proton-Transfer Reaction Dynamics within Mesoporous Nanotubes. Journal of Physical Chemistry C, 2010, 114, 6311-6317.	1.5	18
46	Dynamical and Structural Changes of an Anesthetic Analogue in Chemical and Biological Nanocavities. Journal of Physical Chemistry B, 2008, 112, 13641-13647.	1.2	8
47	Chemical and Biological Caging Effects on the Relaxation of a Proton-Transfer Dye. Langmuir, 2008, 24, 10352-10357.	1.6	21