
Martin Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026634/publications.pdf Version: 2024-02-01

MADTIN LUNC

#	Article	IF	CITATIONS
1	Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science, 2010, 329, 834-838.	6.0	2,056
2	The dominant role of semi-arid ecosystems in the trend and variability of the land CO ₂ sink. Science, 2015, 348, 895-899.	6.0	1,002
3	Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research, 2011, 116, .	3.3	933
4	New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	749
5	Evaluation of terrestrial carbon cycle models for their response to climate variability and to <scp><scp>CO₂</scp> trends. Global Change Biology, 2013, 19, 2117-2132.</scp>	4.2	617
6	Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 2017, 541, 516-520.	13.7	480
7	Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences, 2016, 13, 4291-4313.	1.3	447
8	Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 2006, 101, 534-553.	4.6	399
9	Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences, 2020, 17, 1343-1365.	1.3	323
10	Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature, 2021, 592, 65-69.	13.7	241
11	C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: experimental protocol for CMIP6. Geoscientific Model Development, 2016, 9, 2853-2880.	1.3	186
12	Earlier springs decrease peak summer productivity in North American boreal forests. Environmental Research Letters, 2013, 8, 024027.	2.2	164
13	Reviews and syntheses: Turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences, 2019, 16, 3747-3775.	1.3	150
14	Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sensing, 2018, 10, 1346.	1.8	122
15	The three major axes of terrestrial ecosystem function. Nature, 2021, 598, 468-472.	13.7	99
16	Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites. Global Change Biology, 2020, 26, 6916-6930.	4.2	97
17	Global distribution of groundwaterâ€vegetation spatial covariation. Geophysical Research Letters, 2017, 44, 4134-4142.	1.5	91
18	Quantifying the effect of forest age in annual net forest carbon balance. Environmental Research Letters, 2018, 13, 124018,	2.2	67

Martin Jung

#	Article	IF	CITATIONS
19	Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability. Geophysical Research Letters, 2019, 46, 1429-1440.	1.5	61
20	Coupling Water and Carbon Fluxes to Constrain Estimates of Transpiration: The TEA Algorithm. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3617-3632.	1.3	56
21	Towards hybrid modeling of the global hydrological cycle. Hydrology and Earth System Sciences, 2022, 26, 1579-1614.	1.9	39
22	A Guided Hybrid Genetic Algorithm for Feature Selection with Expensive Cost Functions. Procedia Computer Science, 2013, 18, 2337-2346.	1.2	35
23	Water-stress-induced breakdown of carbon–water relations: indicators from diurnal FLUXNET patterns. Biogeosciences, 2018, 15, 2433-2447.	1.3	30
24	Large-scale biospheric drought response intensifies linearly with drought duration in arid regions. Biogeosciences, 2020, 17, 2647-2656.	1.3	27
25	Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. Global Change Biology, 2020, 26, 4379-4400.	4.2	27
26	Carbon–water flux coupling under progressive drought. Biogeosciences, 2019, 16, 2557-2572.	1.3	24
27	Detecting the critical periods that underpin interannual fluctuations in the carbon balance of European forests. Journal of Geophysical Research, 2010, 115, .	3.3	22
28	Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural Networks. Frontiers in Big Data, 2019, 2, 31.	1.8	18
29	The importance of vegetation in understanding terrestrial water storage variations. Hydrology and Earth System Sciences, 2022, 26, 1089-1109.	1.9	8
30	Technical note: A view from space on global flux towers by MODIS and Landsat: the FluxnetEO data set. Biogeosciences, 2022, 19, 2805-2840.	1.3	8
31	Characterizing the Response of Vegetation Cover to Water Limitation in Africa Using Geostationary Satellites. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	3