Carlos Alonso Moreno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guanidines: from classical approaches to efficient catalytic syntheses. Chemical Society Reviews, 2014, 43, 3406-3425.	38.1	176
2	Well-Defined Alkyl Heteroscorpionate Magnesium Complexes as Excellent Initiators for the ROP of Cyclic Esters. Organometallics, 2007, 26, 6403-6411.	2.3	107
3	Synthesis of Cyclic Carbonates Catalysed by Aluminium Heteroscorpionate Complexes. Chemistry - A European Journal, 2015, 21, 9850-9862.	3.3	104
4	Stereoselective Production of Poly(<i>rac</i> -lactide) by ROP with Highly Efficient Bulky Heteroscorpionate Alkylmagnesium Initiators. Organometallics, 2011, 30, 2775-2789.	2.3	92
5	Synthesis of cyclic carbonates catalysed by aluminium heteroscorpionate complexes. Catalysis Science and Technology, 2014, 4, 1674-1684.	4.1	87
6	Simple, Versatile, and Efficient Catalysts for Guanylation of Amines. Organometallics, 2010, 29, 2789-2795.	2.3	86
7	Ringâ€Opening Polymerization of Cyclic Esters by an Enantiopure Heteroscorpionate Rare Earth Initiator. Angewandte Chemie - International Edition, 2009, 48, 2176-2179.	13.8	83
8	Hybrid Scorpionate/Cyclopentadienyl Magnesium and Zinc Complexes: Synthesis, Coordination Chemistry, and Ring-Opening Polymerization Studies on Cyclic Esters. Inorganic Chemistry, 2010, 49, 2859-2871.	4.0	80
9	Neutral and Cationic Aluminum Complexes Supported by Acetamidate and Thioacetamidate Heteroscorpionate Ligands as Initiators for Ring-Opening Polymerization of Cyclic Esters. Organometallics, 2011, 30, 1507-1522.	2.3	77
10	Ring-Opening (ROP) versus Ring-Expansion (REP) Polymerization of ε-Caprolactone To Give Linear or Cyclic Polycaprolactones. Macromolecules, 2013, 46, 6388-6394.	4.8	75
11	Discrete Heteroscorpionate Lithium and Zinc Alkyl Complexes. Synthesis, Structural Studies, and ROP of Cyclic Esters. Organometallics, 2008, 27, 1310-1321.	2.3	72
12	Oneâ€Component Aluminum(heteroscorpionate) Catalysts for the Formation of Cyclic Carbonates from Epoxides and Carbon Dioxide. ChemSusChem, 2017, 10, 1175-1185.	6.8	68
13	An Overview of Antibody Conjugated Polymeric Nanoparticles for Breast Cancer Therapy. Pharmaceutics, 2020, 12, 802.	4.5	62
14	Scandium and Yttrium Complexes Supported by NNCp Heteroscorpionate Ligands: Synthesis, Structure, and Polymerization of Ϊμ-Caprolactone. Organometallics, 2008, 27, 976-983.	2.3	61
15	Antibody Conjugation of Nanoparticles as Therapeutics for Breast Cancer Treatment. International Journal of Molecular Sciences, 2020, 21, 6018.	4.1	52
16	Synthesis, structural characterization and catalytic evaluation of the ring-opening polymerization of discrete five-coordinate alkyl aluminium complexes. Dalton Transactions, 2013, 42, 9325.	3.3	50
17	Evidence for Mixed-Ion Clusters in Metallocene Catalysts:Â Influence on Ligand Exchange Dynamics and Catalyst Activity. Journal of the American Chemical Society, 2007, 129, 9282-9283.	13.7	48
	Ligand Mobility and Solution Structures of the Metallocenium Ion Pairs [Mecsub22/sub2C(Cn)(fluorenyl)MCHcsub22/sub2SiMecsub23/sub23sub24sub24sub24sub24sub24sub24sub24sub24		

18 [Me₂C(Cp)(fluorenyl)MCH₂SiMe₃⁺A·A·A·X^{â²}] (M = Zr, Hf; X = MeB(C₆F₅)₃,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 52 Td (B(C₆F<</p>

#	Article	IF	CITATIONS
19	PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chemistry, 2020, 328, 127131.	8.2	46
20	Controlled Delivery of BET-PROTACs: In Vitro Evaluation of MZ1-Loaded Polymeric Antibody Conjugated Nanoparticles in Breast Cancer. Pharmaceutics, 2020, 12, 986.	4.5	41
21	Oxo- and imido-alkoxide vanadium complexes as precatalysts for the guanylation of aromatic amines. Dalton Transactions, 2010, 39, 6419.	3.3	40
22	Trastuzumab-Targeted Biodegradable Nanoparticles for Enhanced Delivery of Dasatinib in HER2+ Metastasic Breast Cancer. Nanomaterials, 2019, 9, 1793.	4.1	40
23	Versatile Scorpionates and New Developments in the Denticity Changes of NNCp Hybrid Scorpionate/Cyclopentadienyl Ligands in Sc and Y Compounds: From le ¹ -Nl· ⁵ -Cp to le ² -NNl· ⁵ -Cp. Inorganic Chemistry, 2008, 47, 4996-5005.	4.0	38
24	Heteroscorpionate rare-earth initiators for the controlled ring-opening polymerization of cyclic esters. Dalton Transactions, 2011, 40, 4687.	3.3	37
25	New achiral and chiral NNE heteroscorpionate ligands. Synthesis of homoleptic lithium complexes as well as halide and alkyl scandium and yttrium complexes. Dalton Transactions, 2010, 39, 930-940.	3.3	36
26	Formation and structures of cationic zirconium complexes in ternary systems (X=Cl, Me). Journal of Organometallic Chemistry, 2007, 692, 859-868.	1.8	35
27	Catalytic behaviour in the ring-opening polymerisation of organoaluminiums supported by bulky heteroscorpionate ligands. Dalton Transactions, 2015, 44, 12388-12400.	3.3	35
28	Synthesis, structures and ring-opening polymerization studies of new zinc chloride and amide complexes supported by amidinate heteroscorpionate ligands. Dalton Transactions, 2009, , 8054.	3.3	34
29	Synthesis and structures of complexes with axially chiral isoquinolinyl-naphtholate ligands. Dalton Transactions, 2009, , 8667.	3.3	34
30	Synthesis of helical aluminium catalysts for cyclic carbonate formation. Dalton Transactions, 2019, 48, 4218-4227.	3.3	33
31	Straightforward Generation of Helical Chirality Driven by a Versatile Heteroscorpionate Ligand: Selfâ€Assembly of a Metal Helicate by Using CHï£¿ï€ Interactions. Chemistry - A European Journal, 2010, 16, 8615-8619.	3.3	31
32	Modified silicas as supports for single-site zirconocene catalysts. Journal of Molecular Catalysis A, 2004, 220, 286-296.	4.8	30
33	Niobium, titanium, zirconium and hafnium complexes incorporating germanium bridged ansa ligands. X-Ray crystal structures of [Zr{Me2Ge(î·5-C5Me4)2}Cl2] and [M{Me2Ge(î·5-C5Me4)(î·5-C5H4)}Cl2] (M=Zr, Hf). Journal of Organometallic Chemistry, 2002, 656, 129-138.	1.8	29
34	Wellâ€Defined Regioselective Iminopyridine Rhodium Catalysts for Antiâ€Markovnikov Addition of Aromatic Primary Amines to 1â€Octyne. Advanced Synthesis and Catalysis, 2009, 351, 881-890.	4.3	29
35	Aminophosphine ligands as a privileged platform for development of antitumoral ruthenium(<scp>ii</scp>) arene complexes. Dalton Transactions, 2017, 46, 16113-16125.	3.3	27
36	Novel Indenylzirconium Complexes as Supported Catalysts in the Polymerization of Ethylene. European Journal of Inorganic Chemistry, 2005, 2005, 2924-2934.	2.0	24

#	Article	IF	CITATIONS
37	Poly(Cyclohexene Phthalate) Nanoparticles for Controlled Dasatinib Delivery in Breast Cancer Therapy. Nanomaterials, 2019, 9, 1208.	4.1	24
38	Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. Cancers, 2021, 13, 3387.	3.7	24
39	Alternating Copolymerization of Epoxides and Anhydrides Catalyzed by Aluminum Complexes. ACS Omega, 2018, 3, 17581-17589.	3.5	21
40	Versatile organoaluminium catalysts based on heteroscorpionate ligands for the preparation of polyesters. Dalton Transactions, 2018, 47, 7471-7479.	3.3	21
41	Bimetallic Zinc Catalysts for Ring-Opening Copolymerization Processes. Inorganic Chemistry, 2020, 59, 8412-8423.	4.0	21
42	Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma. International Journal of Pharmaceutics, 2019, 558, 110-119.	5.2	19
43	The role of water and influence of hydrogen bonding on the self-assembly aggregation induced emission of an anthracene-guanidine-derivative. Chemical Communications, 2020, 56, 4102-4105.	4.1	19
44	Environmental potential of the use of CO2 from alcoholic fermentation processes. The CO-AFP strategy. Science of the Total Environment, 2016, 568, 319-326.	8.0	18
45	Synthesis and structural characterization of amido heteroscorpionate rare-earth metal complexes and hydroamination of aminoalkenes. New Journal of Chemistry, 2015, 39, 7672-7681.	2.8	16
46	Supported modified zirconocene catalyst for ethylene polymerization. Journal of Molecular Catalysis A, 2006, 258, 236-245.	4.8	15
47	Molecular Structure of a Hydridoniobocene Complex [Nb(η ⁵ â€C ₅ H ₄ SiMe ₃) ₂ (H) ₃] and Its Use as Catalyst for the Ringâ€Opening Polymerization of Cyclic Esters. European Journal of Inorganic Chemistry, 2012, 2012, 1139-1144.	2.0	14
48	Tris(pentafluorophenyl)borane as an efficient catalyst in the guanylation reaction of amines. Dalton Transactions, 2016, 45, 10717-10729.	3.3	14
49	Heteroscorpionate aluminium complexes as chiral building blocks to engineer helical architectures. Dalton Transactions, 2013, 42, 14240.	3.3	13
50	Guanidine Substitutions in Naphthyl Systems to Allow a Controlled Excited-State Intermolecular Proton Transfer: Tuning Photophysical Properties in Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 9363-9373.	3.1	13
51	Activation process of 3-alkyl-substituted ansa-bis(indenyl) zirconocenes by MAO. Journal of Molecular Catalysis A, 2007, 261, 53-63.	4.8	11
52	Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO ₂ and Cyclohexene Oxide. Organometallics, 2021, 40, 1503-1514.	2.3	11
53	Mithramycin delivery systems to develop effective therapies in sarcomas. Journal of Nanobiotechnology, 2021, 19, 267.	9.1	11
54	Vitamin E Delivery Systems Increase Resistance to Oxidative Stress in Red Deer Sperm Cells: Hydrogel and Nanoemulsion Carriers. Antioxidants, 2021, 10, 1780.	5.1	11

#	Article	IF	CITATIONS
55	MCM-41/ansa-zirconocene supported catalysts: Preparation, characterization and catalytic behaviour in ethylene polymerization. Journal of Molecular Catalysis A, 2009, 304, 107-116.	4.8	10
56	Novel Fluorescence Guanidine Molecules for Selective Sulfate Anion Detection in Water Complex Samples over a Wide pH Range. ACS Sensors, 2021, 6, 3224-3233.	7.8	10
57	The carbon footprint balance of a real-case wine fermentation CO2 capture and utilization strategy. Renewable and Sustainable Energy Reviews, 2022, 157, 112058.	16.4	10
58	Phenyl-guanidine derivatives as potential therapeutic agents for glioblastoma multiforme: catalytic syntheses, cytotoxic effects and DNA affinity. RSC Advances, 2016, 6, 8267-8276.	3.6	9
59	Synthesis, characterization, DNA interactions and antiproliferative activity on glioblastoma of iminopyridine platinum(II) chelate complexes. Journal of Inorganic Biochemistry, 2017, 168, 46-54.	3.5	9
60	Synthesis, characterization and compared reactivity of asymmetrical ansa-metallocenes. Inorganic Chemistry Communication, 2009, 12, 184-186.	3.9	7
61	Screening and Preliminary Biochemical and Biological Studies of [RuCl(<i>p</i> -cymene)(<i>N</i> , <i>N</i> -bis(diphenylphosphino)-isopropylamine)][BF ₄] in Breast Cancer Models. ACS Omega, 2019, 4, 13005-13014.	3.5	7
62	A novel bis(pyrazolyl)methane compound as a potential agent against Gram-positive bacteria. Scientific Reports, 2021, 11, 16306.	3.3	7
63	Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles. Frontiers in Cell and Developmental Biology, 2021, 9, 805336.	3.7	7
64	Multifunctional PLA/Gelatin Bionanocomposites for Tailored Drug Delivery Systems. Pharmaceutics, 2022, 14, 1138.	4.5	7
65	Synthesis, Characterization, and Catalytic Properties ofansa-Zirconocenes [Zr{1-Me2Si(3-η5-C9H5R)2}Cl2] (R = Me,nPr,nBu, and Bz). European Journal of Inorganic Chemistry, 2006, 2006, 972-979.	2.0	5
66	UV–visible spectroscopy for zirconocene activation by MAO in olefin polymerization: activity versus wavenumber. Applied Organometallic Chemistry, 2009, 23, 241-244.	3.5	5
67	Ring-Opening Copolymerization of Cyclohexene Oxide and Cyclic Anhydrides Catalyzed by Bimetallic Scorpionate Zinc Catalysts. Polymers, 2021, 13, 1651.	4.5	5
68	The Effect of WS2 Nanosheets on the Non-Isothermal Cold- and Melt-Crystallization Kinetics of Poly(I-lactic acid) Nanocomposites. Polymers, 2021, 13, 2214.	4.5	5
69	Toward the Prediction of Activity in the Ethylene Polymerisation of ansaâ€Bis(indenyl) Zirconocenes: Effect of the Stereochemistry and Hydrogenation of the Indenyl Moiety. ChemPlusChem, 2015, 80, 963-972.	2.8	3
70	The Carbon Dioxide-Rumen Fermentation Processes-strategy, a proposal to sustain environmentally friendly dairy farms. Journal of Cleaner Production, 2018, 204, 735-743.	9.3	3
71	Tuning the Cytotoxicity of Bis-Phosphino-Amines Ruthenium(II) Para-Cymene Complexes for Clinical Development in Breast Cancer. Pharmaceutics, 2021, 13, 1559.	4.5	3
72	Synthesis of High Molecular Weight Stereo-Di-Block Copolymers Driven by a Co-Initiator Free Catalyst. Polymers, 2022, 14, 232.	4.5	3

#	Article	IF	CITATIONS
73	A bis(pyrazolyl)methane derivative against clinical Staphylococcus aureus strains isolated from otitis externa. Laryngoscope Investigative Otolaryngology, 2022, 7, 283-290.	1.5	2
74	Capture agents, conversion mechanisms, biotransformations and biomimetics: general discussion. Faraday Discussions, 2015, 183, 463-487.	3.2	1
75	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers. , 2021, , 3-43.		0
76	Quick Fire Set of Questions About CO2 that Need to Be Answered. SpringerBriefs in Applied Sciences and Technology, 2020, , 81-98.	0.4	0
77	The â€~CO2-RFP Strategy'. SpringerBriefs in Applied Sciences and Technology, 2020, , 99-112.	0.4	0
78	Oro nanométrico y vectorizado como potencial estrategia hacia el tratamiento de la artritis reumatoide. FarmaJournal, 2020, 5, 75-83.	0.0	0