
Parthasarathy Chandrakesan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026571/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and Injury-Inducible Stem Cell Activity. Cell Stem Cell, 2017, 21, 78-90.e6.	11.1	280
2	DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer. PLoS ONE, 2013, 8, e73940.	2.5	132
3	XMD8-92 inhibits pancreatic tumor xenograft growth via a DCLK1-dependent mechanism. Cancer Letters, 2014, 351, 151-161.	7.2	107
4	Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1. Molecular Cancer, 2014, 13, 103.	19.2	102
5	Dclk1, a tumor stem cell marker, regulates pro-survival signaling and self-renewal of intestinal tumor cells. Molecular Cancer, 2017, 16, 30.	19.2	91
6	DCLK1 is a broadly dysregulated target against epithelial-mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. Oncotarget, 2015, 6, 2193-2205.	1.8	85
7	Brief Report: Dclk1 Deletion in Tuft Cells Results in Impaired Epithelial Repair After Radiation Injury. Stem Cells, 2014, 32, 822-827.	3.2	73
8	Dclk1 facilitates intestinal tumor growth via enhancing pluripotency and epithelial mesenchymal transition. Oncotarget, 2014, 5, 9269-9280.	1.8	71
9	Utility of a bacterial infection model to study epithelial–mesenchymal transition, mesenchymal–epithelial transition or tumorigenesis. Oncogene, 2014, 33, 2639-2654.	5.9	59
10	Ablation of Doublecortin-Like Kinase 1 in the Colonic Epithelium Exacerbates Dextran Sulfate Sodium-Induced Colitis. PLoS ONE, 2015, 10, e0134212.	2.5	58
11	Critical Roles of Notch and Wnt/β-Catenin Pathways in the Regulation of Hyperplasia and/or Colitis in Response to Bacterial Infection. Infection and Immunity, 2012, 80, 3107-3121.	2.2	52
12	Alternative splice variants of DCLK1 mark cancer stem cells, promote selfâ€renewal and drugâ€resistance, and can be targeted to inhibit tumorigenesis in kidney cancer. International Journal of Cancer, 2018, 143, 1162-1175.	5.1	52
13	Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. Journal of Cancer Research and Clinical Oncology, 2010, 136, 759-770.	2.5	50
14	Plasma DCLK1 is a marker of hepatocellular carcinoma (HCC): Targeting DCLK1 prevents HCC tumor xenograft growth via a microRNA-dependent mechanism. Oncotarget, 2015, 6, 37200-37215.	1.8	47
15	Novel Changes in NF-κB Activity during Progression and Regression Phases of Hyperplasia. Journal of Biological Chemistry, 2010, 285, 33485-33498.	3.4	46
16	Doublecortin-Like Kinase 1 Is Elevated Serologically in Pancreatic Ductal Adenocarcinoma and Widely Expressed on Circulating Tumor Cells. PLoS ONE, 2015, 10, e0118933.	2.5	42
17	Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal. Oncotarget, 2015, 6, 30876-30886.	1.8	40
18	Intestinal tuft cells regulate the ATM mediated DNA Damage response via Dclk1 dependent mechanism for crypt restitution following radiation injury. Scientific Reports, 2016, 6, 37667.	3.3	37

#	Article	IF	CITATIONS
19	Distinct Compartmentalization of NF-ήB Activity in Crypt and Crypt-Denuded Lamina Propria Precedes and Accompanies Hyperplasia and/or Colitis following Bacterial Infection. Infection and Immunity, 2012, 80, 753-767.	2.2	33
20	Inhibition of Notch signaling reduces the number of surviving Dclk1 ⁺ reserve crypt epithelial stem cells following radiation injury. American Journal of Physiology - Renal Physiology, 2014, 306, G404-G411.	3.4	32
21	Fluvastatin Interferes with Hepatitis C Virus Replication via Microtubule Bundling and a Doublecortin-like Kinase-Mediated Mechanism. PLoS ONE, 2013, 8, e80304.	2.5	31
22	DCLK1 Regulates Tumor Stemness and Cisplatin Resistance in Non-small Cell Lung Cancer via ABCD-Member-4. Molecular Therapy - Oncolytics, 2020, 18, 24-36.	4.4	31
23	Survival of Patients with Gastrointestinal Cancers Can Be Predicted by a Surrogate microRNA Signature for Cancer Stem–like Cells Marked by DCLK1 Kinase. Cancer Research, 2016, 76, 4090-4099.	0.9	30
24	Overexpression of DCLK1-AL Increases Tumor Cell Invasion, Drug Resistance, and KRAS Activation and Can Be Targeted to Inhibit Tumorigenesis in Pancreatic Cancer. Journal of Oncology, 2019, 2019, 1-11.	1.3	29
25	(Z)-3,5,4′-Trimethoxystilbene Limits Hepatitis C and Cancer Pathophysiology by Blocking Microtubule Dynamics and Cell-Cycle Progression. Cancer Research, 2016, 76, 4887-4896.	0.9	28
26	Tuft and Cancer Stem Cell Marker DCLK1: A New Target to Enhance Anti-Tumor Immunity in the Tumor Microenvironment. Cancers, 2020, 12, 3801.	3.7	28
27	Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury. PLoS ONE, 2015, 10, e0135561.	2.5	27
28	Inflammatory and oncogenic roles of a tumor stem cell marker doublecortin-like kinase (DCLK1) in virus-induced chronic liver diseases. Oncotarget, 2015, 6, 20327-20344.	1.8	27
29	DCLK1-Isoform2 Alternative Splice Variant Promotes Pancreatic Tumor Immunosuppressive M2-Macrophage Polarization. Molecular Cancer Therapeutics, 2020, 19, 1539-1549.	4.1	23
30	Differential Effects of β-catenin and NF-κB Interplay in the Regulation of Cell Proliferation, Inflammation and Tumorigenesis in Response to Bacterial Infection. PLoS ONE, 2013, 8, e79432.	2.5	18
31	Evidence of functional cross talk between the Notch and NF-κB pathways in nonneoplastic hyperproliferating colonic epithelium. American Journal of Physiology - Renal Physiology, 2013, 304, G356-G370.	3.4	16
32	Doublecortin-like kinase 1 promotes hepatocyte clonogenicity and oncogenic programming via non-canonical β-catenin-dependent mechanism. Scientific Reports, 2020, 10, 10578.	3.3	9
33	Inflammatory Mediators and Gut Microbial Toxins Drive Colon Tumorigenesis by IL-23 Dependent Mechanism. Cancers, 2021, 13, 5159.	3.7	8
34	Discovery and Development of a Novel mPGES-1/5-LOX Dual Inhibitor LFA-9 for Prevention and Treatment of Chronic Inflammatory Diseases. Journal of Inflammation Research, 2020, Volume 13, 1261-1278.	3.5	7
35	Elevated doublecortin-like kinase 1 serum levels revert to baseline after therapy in early stage esophageal adenocarcinoma. Biomarker Research, 2019, 7, 5.	6.8	4
36	Abstract 577: Systemic delivery of CBT-15G DCLK1-targeted monoclonal antibody dramatically decreases tumorigenesis in a xenograft model of pancreatic cancer. Cancer Research, 2016, 76, 577-577.	0.9	3

 Mo1304 Dietary Omega-3 Polyunsaturated Fatty Acids Increase Intestinal Crypt Stem Cell Survival Following Radiation Injury. Gastroenterology, 2016, 150, S692. Cancer cell of origin controls epithelial-to-mesenchymal transition in skin squamous cell carcinoma. Stem Cell Investigation, 2017, 4, 34-34. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells. Stem Cell Investigation, 2020, 7, 20-20. Sa1824 Dietary Pectin Increases Intestinal Crypt Stem Cell Survival Following Radiation Injury. Gastroenterology, 2012, 142, S-334. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochimica Et Biophysica Sinica, 2020, 52, 638-653. 	IF	CITATIONS
 Stem Cell Investigation, 2017, 4, 34-34. Tamoxifen induces stem-like phenotypes and multidrug resistance by altering epigenetic regulators in ERα+ breast cancer cells. Stem Cell Investigation, 2020, 7, 20-20. Sa1824 Dietary Pectin Increases Intestinal Crypt Stem Cell Survival Following Radiation Injury. Gastroenterology, 2012, 142, S-334. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochimica Et Biophysica Sinica, 2020, 52, 638-653. 	1.3	2
 ³⁹ ERα+ breast cancer cells. Stem Cell Investigation, 2020, 7, 20-20. ⁴⁰ Sa1824 Dietary Pectin Increases Intestinal Crypt Stem Cell Survival Following Radiation Injury. Gastroenterology, 2012, 142, S-334. ⁴¹ Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochimica Et Biophysica Sinica, 2020, 52, 638-653. 	3.0	2
 Gastroenterology, 2012, 142, S-334. Reverse engineering a predictive signature characterized by proliferation, DNA damage, and immune escape from stage I lung adenocarcinoma recurrence. Acta Biochimica Et Biophysica Sinica, 2020, 52, 638-653. 	3.0	2
41 escape from stage l lung adenocarcinoma recurrence. Acta Biochimica Et Biophysica Sinica, 2020, 52, 638-653.	1.3	1
	2.0	1
LFAâ€9, a Selective Inhibitor of Microsomal Prostaglandin Synthaseâ€1 and 5â€Lipoxygenase: Prevention of Inflammatory and Oncologic Diseases. FASEB Journal, 2020, 34, 1-1.	0.5	1
Abstract 4220: Silencing DCLK1 prevents breast cancer cell self-renewal, epithelial mesenchymal transition, circulating tumor cells and metastasis. , 2015, , .		1
Abstract 2493: Knocking down the expression of DCLK1 reduces mammary tumor formation, tumor cell self-renewal and metastasis: DCLK1 a novel therapeutic target in breast cancer. Cancer Research, 2016, 76, 2493-2493.	0.9	1
⁴⁵ M1837 Nuclear Factor-κB Regulates Functional Cross-Talk Between the Stroma and the Colonic Epithelium. Gastroenterology, 2010, 138, S-429.	1.3	0
Functional Cross-Talk Between the Wnt and Notch Pathways Regulate Hyperplasia and/or Colitis in Response to Bacterial Infection. Gastroenterology, 2011, 140, S-56.	1.3	0
NF-κB Regulates Splenomegaly in Response to Bacterial Infection. Gastroenterology, 2011, 140, S-325.	1.3	0
 Tu1889 Evidence of Functional Cross-Talk Between the Notch and NF-kB Pathways in Non-Neoplastic Hyperproliferating Colonic Epithelium. Gastroenterology, 2012, 142, S-870. 	1.3	0
 Sa1800 Systemic Delivery of Nanoparticle-Encapsulated SiRNA Targeting DCAMKL-1 Results in Reduced Intestinal Polyposis in APCMIN/+ Mice. Gastroenterology, 2012, 142, S-329. 	1.3	0
50 Su1842 Role of DCAMKL-1+ Stem Cells in Epithelial-Mesenchymal Transition and Intestinal Neoplasia. Gastroenterology, 2012, 142, S-517.	1.3	0
⁵¹ Tu1735 DCLK1 Deletion in Mouse Small Intestinal Tuft Cells Results in Impaired Epithelial Restoration Following Radiation Injury. Gastroenterology, 2013, 144, S-833-S-834.	1.3	0
52 Mo1805 Ablation of DCLK1 in Intestinal Epithelium Exacerbates Colonic Epithelial Barrier Damage in Response to DSS Treatment. Gastroenterology, 2013, 144, S-668.	1.3	0
404 Functional Significance of DCLK1 in the Regulation of Molecular Signaling Is Critical for 53 Intestinal Epithelial Cell Functioning/Survival Following 24h Radiation Injury. Gastroenterology, 2013, 144, S-78-S-79.	1.3	0
 241 Small Molecule Inhibitors Xmd8-92 and Pv1019 Inhibit Pancreatic Tumor Xenograft Growth via a DCLK1 Dependent Mechanism. Gastroenterology, 2013, 144, S-53. 	1.3	0

#	Article	IF	CITATIONS
55	Tu1693 DCLK1 Enhances Epithelial Pluripotency and Oncogenic Signaling During Intestinal Tumor Progression. Gastroenterology, 2014, 146, S-820.	1.3	0
56	Su1862 RNA Binding Protein Musashi-1 Regulates Tumorigenesis and Angiogenesis via MicroRNA-Dependent Mechanism. Gastroenterology, 2014, 146, S-488.	1.3	0
57	Su1997 Ablation of Mesenchymal DCLK1 by the Foxl1-Cre Promoter Results in Increased Epithelial Tuft Cells. Gastroenterology, 2014, 146, S-518.	1.3	Ο
58	Tu1216 DCLK1 Regulates Intestinal Epithelial Self-Renewal, Survival Signaling Pathways and DNA Repair Machinery in Response to Genotoxic Injury. Gastroenterology, 2014, 146, S-786.	1.3	0
59	Mo1929 Small-Molecule Parkinson's Disease Kinase Inhibitor LRRK2-in-1 Demonstrates Potent Anti-Cancer Activity Through Inhibition of DCLK1. Gastroenterology, 2014, 146, S-694.	1.3	Ο
60	Su2006 The DCLK1 Tumor Stem Cell Marker Is a Central Regulatory Component of the Epithelial-Mesenchymal Transition Program in Colorectal Cancer. Gastroenterology, 2015, 148, S-573.	1.3	0
61	Su2005 DCLK1 Promotes Pancreatic Cancer Cell Clonogenicity and Invasiveness. Gastroenterology, 2015, 148, S-572-S-573.	1.3	0
62	130 DCLK1 Regulates COX-2 via miR-144 microRNA-Dependent Mechanism. Gastroenterology, 2015, 148, S-34.	1.3	0
63	674 dclk1+ Tuft Cells Display Quiescent Stem Cell-Like Properties in the Small Intestine. Gastroenterology, 2015, 148, S-130.	1.3	0
64	Sa1426 Dclk1+ Tuft Cells Regulate IEC Self-Renewal and Survival in Response to Injury via a Prostanoids/Prostaglandin Dependent Mechanism. Gastroenterology, 2016, 150, S312.	1.3	0
65	197 Tempol, Telmisartan, and Yk-4-250 Act As Radiation Mitigators, Prevent GI Acute Radiation Syndrome, and Promote Overall Survival Following Radiation Injury. Gastroenterology, 2016, 150, S51-S52.	1.3	0
66	Su1998 Comparison of DCLK1 Levels in Esophageal Adenocarcinoma Pre- and Post-Treatment. Gastroenterology, 2016, 150, S605-S606.	1.3	0
67	Su2004 A 15-miRNA-Surrogate Signature for Doublecortin-Like Kinase 1 Tumor Stem Cell Marker Activity Predicts Survival in Colon, Pancreatic, and Stomach Cancer. Gastroenterology, 2016, 150, S607-S608.	1.3	0
68	DCLK1 and DNA Damage Response. , 0, , .		0
69	Abstract 5654: Novel changes in colonic epithelial junctional complexes precede onset of colitis in response toCitrobacter rodentiuminfection. , 2010, , .		0
70	Abstract 2833: Functional cross-talk between the Wnt and Notch pathways regulate hyperplasia and/or colitis in response to bacterial infection. , 2011, , .		0
71	Abstract 1404: Bacterial infection-induced epithelial-to-mesenchymal transition (EMT) of colonic crypt cells with acquired characteristics of stem cells promotes spheroid/organoid formationin vitroand tumorigenesisin vivo. , 2012, , .		0
72	Abstract 4552: Trimethoxy-cis-stilbene exhibits potent anti-tumor activities via suppression of AKT signaling and cell cycle arrest in virus-induced hepatocellular carcinoma. , 2014, , .		0

#	Article	IF	CITATIONS
73	Abstract 3171: Overexpression of a cancer stem cell marker doublecortin-like kinase (DCLK1) leads to activation of inflammatory cascade during development of virus-induced hepatocellular carcinoma. , 2014, , .		0
74	Abstract LB-48: DCLK1 targeted monoclonal antibodies demonstrate therapeutic potential against pancreatic ductal adenocarcinoma. , 2014, , .		0
75	Abstract 4374: DCLK1 is a broadly dysregulated target against epithelial-mesenchymal transition, focal adhesion, and stemness in clear cell renal carcinoma. , 2015, , .		Ο
76	Abstract 2239: The tumor stem cell marker doublecortin-like kinase (DCLK1) activates inflammatory and carcinogenic signals in hepatocellular carcinoma. , 2015, , .		0
77	Abstract 1731: Overexpression of DCLK1 in pancreatic cancer activates KRAS/PI3K/MTOR pathway signaling and supports tumorigenesis, invasiveness, and stemness. , 2016, , .		Ο
78	Abstract 3361: Targeting tumor/cancer stem cell marker DCLK1 for the treatment of hepatocellular carcinoma and erlotinib-resistant lung adenocarcinoma using Z-3,5,4'-Trimethoxystilbene (Z-TMS). , 2016, , .		0
79	Abstract 3340: Doublecortin-like kinase 1 marks cancer stem-like cells and modulates drug-resistance, self-renewal, and tumorigenesis in renal cancer. , 2016, , .		0
80	Abstract 3888: DCLK1 is part of an EMT feedback loop and promotes colorectal cancer cell invasion and drug resistance. , 2017, , .		0
81	Abstract 3884: A tumor stem cell marker DCLK1 promotes hepatocellular carcinoma by regulating β-catenin, EMT and clonogenic properties of hepatocytes. , 2017, , .		0
82	Abstract 4147: DCLK1 a novel therapeutic target in non-small cell lung cancer. , 2017, , .		0
83	Abstract 3611: Serum DCLK1 levels are elevated in melanoma patients and it is a novel predictive marker for survival and response. , 2018, , .		0
84	Abstract 2594: A multigene recurrence signature identifies highly proliferative tumors that escape immune surveillance in early stage lung and pancreas adenocarcinoma. , 2018, , .		0
85	DCLK1 Regulates Pluripotency and Angiogenic Factors via microRNA-Dependent Mechanisms in Pancreatic Cancer. , 2019, , 1-32.		0
86	Abstract 4034: DCLK1 is upregulated in melanoma and it is a novel predictive marker for survival and response. , 2019, , .		0
87	Abstract 1005: Tamoxifen treatment induces the epigenetic changes in breast cancer stem cells. , 2019, ,		0
88	Abstract 2119: DCLK1 regulates ATR-DNA damage response for KRAS mutant lung cancer drug resistance and stemness. , 2019, , .		0
89	Abstract 4673: DCLK1 promotes hepatocellular carcinoma via atypical β-catenin-regulated signaling and immune suppression. , 2019, , .		0
90	Abstract 3829: Dclk1 expressing crypt epithelial cells become tumor initiating stem cells in an inflammation associated environment. , 2020, , .		0

#	Article	IF	CITATIONS
91	Abstract 6364: LFA-9, a dual mPGES-1 and 5-LOX inhibitor, suppresses colon cancer stemness and inflammogen-induced inflammatory response. , 2020, , .		0
92	Abstract 2830: The impact of gut microbial toxins and PGE2on IL-23 production and its role in obesity associated colorectal tumorigenesis. , 2020, , .		0
93	Abstract 1005: Tamoxifen treatment induces the epigenetic changes in breast cancer stem cells. , 2019, ,		0
94	Abstract 4034: DCLK1 is upregulated in melanoma and it is a novel predictive marker for survival and response. , 2019, , .		0
95	Abstract 2119: DCLK1 regulates ATR-DNA damage response for KRAS mutant lung cancer drug resistance and stemness. , 2019, , .		0
96	Abstract 4673: DCLK1 promotes hepatocellular carcinoma via atypical \hat{l}^2 -catenin-regulated signaling and immune suppression. , 2019, , .		0