
Luciano F Huergo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Emergence of 2-Oxoglutarate as a Master Regulator Metabolite. Microbiology and Molecular Biology Reviews, 2015, 79, 419-435.	2.9	222
2	P _{II} signal transduction proteins: nitrogen regulation and beyond. FEMS Microbiology Reviews, 2013, 37, 251-283.	3.9	178
3	A New PII Protein Structure Identifies the 2-Oxoglutarate Binding Site. Journal of Molecular Biology, 2010, 400, 531-539.	2.0	69
4	PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. Microbiology (United Kingdom), 2012, 158, 176-190.	0.7	64
5	Magnetic Bead-Based Immunoassay Allows Rapid, Inexpensive, and Quantitative Detection of Human SARS-CoV-2 Antibodies. ACS Sensors, 2021, 6, 703-708.	4.0	61
6	ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG. Molecular Microbiology, 2006, 59, 326-337.	1.2	59
7	The Bacterial signal transduction protein <scp>GlnB</scp> regulates the committed step in fatty acid biosynthesis by acting as a dissociable regulatory subunit of acetylâ€ <scp>CoA</scp> carboxylase. Molecular Microbiology, 2015, 95, 1025-1035.	1.2	54
8	Ternary complex formation between AmtB, GlnZ and the nitrogenase regulatory enzyme DraG reveals a novel facet of nitrogen regulation in bacteria. Molecular Microbiology, 2007, 66, 071119190133008-???.	1.2	50
9	Interaction of the Nitrogen Regulatory Protein GlnB (PII) with Biotin Carboxyl Carrier Protein (BCCP) Controls Acetyl-CoA Levels in the Cyanobacterium Synechocystis sp. PCC 6803. Frontiers in Microbiology, 2016, 7, 1700.	1.5	45
10	Nitrogen fixation control in Herbaspirillum seropedicae. Plant and Soil, 2012, 356, 197-207.	1.8	44
11	Genomic comparison of the endophyte Herbaspirillum seropedicaeSmR1 and the phytopathogen Herbaspirillum rubrisubalbicansM1 by suppressive subtractive hybridization and partial genome sequencing. FEMS Microbiology Ecology, 2012, 80, 441-451.	1.3	44
12	Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Letters, 2006, 580, 5232-5236.	1.3	40
13	New views on PII signaling: from nitrogen sensing to global metabolic control. Trends in Microbiology, 2022, 30, 722-735.	3.5	38
14	Crystal structure of the GlnZ-DraG complex reveals a different form of P _{II} -target interaction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18972-18976.	3.3	36
15	Rapid identification of bacterial isolates from wheat roots by high resolution whole cell MALDI-TOF MS analysis. Journal of Biotechnology, 2013, 165, 167-174.	1.9	36
16	Comparative proteome analysis of <i>Xanthomonas campestris</i> pv. <i>campestris</i> in the interaction with the susceptible and the resistant cultivars of <i>Brassica oleracea</i> . FEMS Microbiology Letters, 2009, 298, 260-266.	0.7	31
17	In Vitro Interactions between the PII Proteins and the Nitrogenase Regulatory Enzymes Dinitrogenase Reductase ADP-ribosyltransferase (DraT) and Dinitrogenase Reductase-activating Glycohydrolase (DraC) in Azospirillum brasilense. Journal of Biological Chemistry, 2009, 284, 6674-6682.	1.6	30
18	Search for novel targets of the <scp>P_{II}</scp> signal transduction protein in <scp>B</scp> acteria identifies the <scp>BCCP</scp> component of acetylâ€ <scp>CoA</scp> carboxylase as a <scp>P_{II}</scp> binding partner. Molecular Microbiology, 2014, 91, 751-761.	1.2	30

#	Article	IF	CITATIONS
19	Campylobacter jejuni Dps Protein Binds DNA in the Presence of Iron or Hydrogen Peroxide. Journal of Bacteriology, 2013, 195, 1970-1978.	1.0	28
20	Regulation of Nitrogenase by Reversible Mono-ADP-Ribosylation. Current Topics in Microbiology and Immunology, 2014, 384, 89-106.	0.7	27
21	A simple, economical and reproducible protein extraction protocol for proteomics studies of soybean roots. Genetics and Molecular Biology, 2012, 35, 348-352.	0.6	26
22	Influence of ancient anthropogenic activities on the mangrove soil microbiome. Science of the Total Environment, 2018, 645, 1-9.	3.9	23
23	Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step. Protein Expression and Purification, 2012, 81, 83-88.	0.6	22
24	Crystal Structure of Dinitrogenase Reductase-activating Glycohydrolase (DRAG) Reveals Conservation in the ADP-Ribosylhydrolase Fold and Specific Features in the ADP-Ribose-binding Pocket. Journal of Molecular Biology, 2009, 390, 737-746.	2.0	21
25	Draft Genome Sequence of Herbaspirillum lusitanum P6-12, an Endophyte Isolated from Root Nodules of Phaseolus vulgaris. Journal of Bacteriology, 2012, 194, 4136-4137.	1.0	21
26	Interaction of GlnK with the GAF domain of Herbaspirillum seropedicae NifA mediates NH4+-regulation. Biochimie, 2012, 94, 1041-1047.	1.3	20
27	Dynamics of the Escherichia coli proteome in response to nitrogen starvation and entry into the stationary phase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 344-352.	1.1	19
28	A broad pH range and processive chitinase from a metagenome library. Brazilian Journal of Medical and Biological Research, 2017, 50, e5658.	0.7	19
29	Proteomic analysis of Herbaspirillum seropedicae reveals ammonium-induced AmtB-dependent membrane sequestration of PII proteins. FEMS Microbiology Letters, 2010, 308, 40-47.	0.7	18
30	Identification of six differentially accumulated proteins of Zea mays seedlings (DKB240 variety) inoculated with Azospirillum brasilense strain FP2. European Journal of Soil Biology, 2013, 58, 45-50.	1.4	18
31	Influence of the ADP/ATP ratio, 2-oxoglutarate and divalent ions on Azospirillum brasilense PII protein signalling. Microbiology (United Kingdom), 2012, 158, 1656-1663.	0.7	17
32	Proteomic Analysis of Herbaspirillum seropedicae Cultivated in the Presence of Sugar Cane Extract. Journal of Proteome Research, 2013, 12, 1142-1150.	1.8	17
33	The Nitrogenase Regulatory Enzyme Dinitrogenase Reductase ADP-Ribosyltransferase (DraT) Is Activated by Direct Interaction with the Signal Transduction Protein GlnB. Journal of Bacteriology, 2013, 195, 279-286.	1.0	17
34	Regulation ofglnBgene promoter expression inAzospirillum brasilenseby the NtrC protein. FEMS Microbiology Letters, 2003, 223, 33-40.	0.7	16
35	Proteomic Analysis of Upland Rice (Oryza sativa L.) Exposed to Intermittent Water Deficit. Protein Journal, 2014, 33, 221-230.	0.7	15
36	Proteomic and Metabolomic Analysis of <i>Azospirillum brasilense ntrC</i> Mutant under High and Low Nitrogen Conditions. Journal of Proteome Research, 2020, 19, 92-105.	1.8	14

#	Article	IF	CITATIONS
37	Effect of the over-expression of PII and PZ proteins on the nitrogenase activity of Azospirillum brasilense. FEMS Microbiology Letters, 2005, 253, 47-54.	0.7	13
38	Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity. Research in Microbiology, 2009, 160, 389-395.	1.0	13
39	Proteins differentially expressed by Shiga toxin-producing Escherichia coli strain M03 due to the biliar salt sodium deoxycholate. Genetics and Molecular Research, 2013, 12, 4909-4917.	0.3	13
40	Use of nitrogen-fixing bacteria to improve agricultural productivity. BMC Proceedings, 2014, 8, .	1.8	13
41	Uncovering prokaryotic biodiversity within aerosols of the pristine Amazon forest. Science of the Total Environment, 2019, 688, 83-86.	3.9	13
42	Influence of seasonality on the aerosol microbiome of the Amazon rainforest. Science of the Total Environment, 2021, 760, 144092.	3.9	13
43	In vitro interaction between the ammonium transport protein AmtB and partially uridylylated forms of the PII protein GlnZ. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1203-1209.	1.1	12
44	NAD+ biosynthesis in bacteria is controlled by global carbon/nitrogen levels via PII signaling. Journal of Biological Chemistry, 2020, 295, 6165-6176.	1.6	12
45	Proteome analysis of an Escherichia coli ptsN -null strain under different nitrogen regimes. Journal of Proteomics, 2018, 174, 28-35.	1.2	11
46	Ultra-fast, high throughput and inexpensive detection of SARS-CoV-2 seroconversion using Ni2+ magnetic beads. Analytical Biochemistry, 2021, 631, 114360.	1.1	11
47	Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense. Archives of Microbiology, 2005, 183, 209-217.	1.0	10
48	First partial proteome of the poultry pathogen Mycoplasma synoviae. Veterinary Microbiology, 2010, 145, 134-141.	0.8	10
49	Mathematical Model of the Binding of Allosteric Effectors to the <i>Escherichia coli</i> PII Signal Transduction Protein GlnB. Biochemistry, 2013, 52, 2683-2693.	1.2	10
50	Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of Escherichia coli categories. Genetics and Molecular Research, 2014, 13, 716-722.	0.3	10
51	2â€Oxoglutarate levels control adenosine nucleotide binding by <i>Herbaspirillum seropedicae </i> <scp>PII</scp> proteins. FEBS Journal, 2015, 282, 4797-4809.	2.2	10
52	The ammonium transporter AmtB and thePIIsignal transduction protein GlnZ are required to inhibit DraG inAzospirillumÂbrasilense. FEBS Journal, 2019, 286, 1214-1229.	2.2	10
53	Kinetic Analysis of a Protein-protein Complex to Determine its Dissociation Constant (KD) and the Effective Concentration (EC50) of an Interplaying Effector Molecule Using Bio-layer Interferometry. Bio-protocol, 2021, 11, e4152.	0.2	10
54	Uridylylation of Herbaspirillum seropedicae GlnB and GlnK proteins is differentially affected by ATP, ADP and 2-oxoglutarate in vitro. Archives of Microbiology, 2012, 194, 643-652.	1.0	9

#	Article	IF	CITATIONS
55	Effect of ATP and 2-oxoglutarate on the in vitro interaction between the NifA GAF domain and the GInB protein of Azospirillum brasilense. Brazilian Journal of Medical and Biological Research, 2012, 45, 1135-1140.	0.7	8
56	Kinetics and structural features of dimeric glutamine-dependent bacterial NAD+ synthetases suggest evolutionary adaptation to available metabolites. Journal of Biological Chemistry, 2018, 293, 7397-7407.	1.6	8
57	The Protein-Protein Interaction Network Reveals a Novel Role of the Signal Transduction Protein PII in the Control of c-di-GMP Homeostasis in Azospirillum brasilense. MSystems, 2020, 5, .	1.7	8
58	Antigen production and development of an indirect ELISA based on the nucleocapsid protein to detect human SARS-CoV-2 seroconversion. Brazilian Journal of Microbiology, 2021, 52, 2069-2073.	0.8	7
59	Proteomic profile of hemolymph and detection of induced antimicrobial peptides in response to microbial challenge in Diatraea saccharalis (Lepidoptera: Crambidae). Biochemical and Biophysical Research Communications, 2016, 473, 511-516.	1.0	6
60	Fatty acid biosynthesis is enhanced in Escherichia coli strains with deletion in genes encoding the PII signaling proteins. Archives of Microbiology, 2019, 201, 209-214.	1.0	6
61	Regulation of Herbaspirillum seropedicae NifA by the GlnK PII signal transduction protein is mediated by effectors binding to allosteric sites. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140348.	1.1	6
62	The protein–protein interaction network of the Escherichia coli EllANtr regulatory protein reveals a role in cell motility and metabolic control. Research in Microbiology, 2021, 172, 103882.	1.0	6
63	SARS-CoV-2 Seroconversion in Response to Infection and Vaccination: a Time Series Local Study in Brazil. Microbiology Spectrum, 0, , .	1.2	6
64	Azospirillum brasilense PII proteins GlnB and GlnZ do not form heterotrimers and GlnB shows a unique trimeric uridylylation pattern. European Journal of Soil Biology, 2009, 45, 94-99.	1.4	4
65	Comparative proteomic analysis between early developmental stages of the Coffea arabica fruits. Genetics and Molecular Research, 2013, 12, 5102-5110.	0.3	4
66	Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense. Microbiological Research, 2015, 171, 65-72.	2.5	4
67	The NADP-dependent malic enzyme MaeB is a central metabolic hub controlled by the acetyl-CoA to CoASH ratio. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140462.	1.1	4
68	Purification of the Campylobacter jejuni Dps protein assisted by its high melting temperature. Protein Expression and Purification, 2015, 111, 105-110.	0.6	3
69	Conserved histidine residues at the ferroxidase centre of the Campylobacter jejuni Dps protein are not strictly required for metal binding and oxidation. Microbiology (United Kingdom), 2016, 162, 156-163.	0.7	3
70	A magnetic bead immunoassay to detect high affinity human IgG reactive to SARS-CoV-2 Spike S1 RBD produced in Escherichia coli. Brazilian Journal of Microbiology, 2022, , 1.	0.8	3
71	Repressor Mutant Forms of the Azospirillum brasilense NtrC Protein. Applied and Environmental Microbiology, 2004, 70, 6320-6323.	1.4	2
72	Spatial Distribution Of Atmospheric Pollutants Through Biomonitoring In Tree Bark Using X-Ray Fluorescence. Ecletica Quimica, 2018, 43, 59.	0.2	2

#	Article	IF	CITATIONS
73	Multiplexed flow cytometric approach for detection of anti-SARS-CoV-2 IgG, IgM and IgA using beads covalently coupled to the nucleocapsid protein. Letters in Applied Microbiology, 2022, 74, 863-872.	1.0	2
74	In vitro characterization of the NAD+ synthetase NadE1 from Herbaspirillum seropedicae. Archives of Microbiology, 2016, 198, 307-313.	1.0	1
75	Characterization of glutamine synthetase from the ammonium-excreting strain HM053 of Azospirillum brasilense. Brazilian Journal of Biology, 2021, 82, e235927.	0.4	1
76	The microbiome of a shell mound: ancient anthropogenic waste as a source of Streptomyces degrading recalcitrant polysaccharides. World Journal of Microbiology and Biotechnology, 2021, 37, 210.	1.7	1
77	SARS-CoV-2 in saliva, viremia and seroprevalence for COVID-19 surveillance at a single hematopoietic stem cell transplantation center: a prospective cohort study. Revista Do Instituto De Medicina Tropical De Sao Paulo, 0, 64, .	0.5	1
78	Análise de NO2, NH3 e PTS na Atmosfera de Paranaguá - PR. Fronteiras, 2020, 9, 212-229.	0.0	0
79	Expression and purification of untagged GlnK proteins from actinobacteria. EXCLI Journal, 2017, 16, 949-958.	0.5	Ο
80	Expression, purification and characterization of the transcription termination factor Rho from	0.6	0

Expression, purification and characterization of the transcription termination factors Azospirillum brasilense. Protein Expression and Purification, 2022, 198, 106114. 80