List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026166/publications.pdf Version: 2024-02-01

Μιιςτλρηλ Ιουιλο

#	Article	IF	CITATIONS
1	Graphene and g-C3N4-Based Gas Sensors. Journal of Nanotechnology, 2022, 2022, 1-20.	1.5	11
2	MoS ₂ Based Nanomaterial for Light Emitting Diode Applications. , 2022, , .		1
3	Experimental and Theoretical Investigations of Low-Dimensional BiFeO3 System for Photocatalytic Applications. Catalysts, 2022, 12, 215.	1.6	14
4	Nanostructured BaTi1-xSnxO3 ferroelectric materials for electrocaloric applications and energy performance. Current Applied Physics, 2022, 38, 59-66.	1.1	2
5	Photoelectrochemical Enhancement of Graphene@WS2 Nanosheets for Water Splitting Reaction. Nanomaterials, 2022, 12, 1914.	1.9	4
6	Strain engineering of the magnetic anisotropy and magnetic moment in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>NdFeO</mml:mi><mml:mn>3epitaxial thin films. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	ml xon:9 1 > < /r	mm d: msub> </td
7	Sub-10Ânm spatial resolution for electrical properties measurements using bimodal excitation in electric force microscopy. Review of Scientific Instruments, 2021, 92, 023703.	0.6	2
8	Recent Progress in the Synthesis of MoS2 Thin Films for Sensing, Photovoltaic and Plasmonic Applications: A Review. Materials, 2021, 14, 3283.	1.3	38
9	Anti-polar state in BiFeO ₃ /NdFeO ₃ superlattices. Journal of Applied Physics, 2021, 130, 244101.	1.1	0
10	Wafer-scale few-layer graphene growth on Cu/Ni films for gas sensing applications. Sensors and Actuators B: Chemical, 2020, 305, 127458.	4.0	25
11	Recent Advances in the Design of Plasmonic Au/TiO2 Nanostructures for Enhanced Photocatalytic Water Splitting. Nanomaterials, 2020, 10, 2260.	1.9	34
12	Adsorption Capacities of Hygroscopic Materials Based on NaCl-TiO ₂ and NaCl-SiO ₂ Core/Shell Particles. Journal of Nanotechnology, 2020, 2020, 1-16.	1.5	8
13	Quantification and mapping of elastic strains in ferroelectric [BaZrO3]xá´§/[BaTiO3](1-x)á´§ superlattices. Applied Surface Science, 2020, 512, 145761.	3.1	6
14	Novel Specimen Design for Measurement of In-Plane Fracture Toughness of Metals. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	0.8	0
15	Investigation of Broadband Surface Plasmon Resonance of Dewetted Au Structures on TiO2 by Aperture-Probe SNOM and FDTD Simulations. Plasmonics, 2019, 14, 205-218.	1.8	17
16	Fracture toughness properties of HIC susceptible carbon steels in sour service conditions. International Journal of Hydrogen Energy, 2019, 44, 22050-22063.	3.8	11
17	Numerical prediction of carbonate elastic properties based on multi-scale imaging. Geomechanics for Energy and the Environment, 2019, 20, 100125.	1.2	15
18	Ultrasonic Synthesis of Carbon Nanotube-Titanium Dioxide Composites: Process Optimization via Response Surface Methodology. ACS Omega, 2019, 4, 535-545.	1.6	11

#	Article	IF	CITATIONS
19	Effect of hydrogen on fracture toughness properties of a pipeline steel under simulated sour service conditions. International Journal of Hydrogen Energy, 2018, 43, 5747-5759.	3.8	46
20	Review of hydrogen-assisted cracking models for application to service lifetime prediction and challenges in the oil and gas industry. Corrosion Reviews, 2018, 36, 323-347.	1.0	29
21	Enhanced solar absorption of gold plasmon assisted TiO2-based water splitting composite. Solar Energy Materials and Solar Cells, 2018, 180, 228-235.	3.0	24
22	Synthesis of InGaN nanowires via metal-assisted photochemical electroless etching for solar cell application. Solar Energy Materials and Solar Cells, 2018, 180, 243-246.	3.0	10
23	Water splitting TiO2 composite material based on black silicon as an efficient photocatalyst. Solar Energy Materials and Solar Cells, 2018, 180, 236-242.	3.0	39
24	Determination of Dead-Oil Wetting and Adhesive Forces on Carbonate Rocks Using Colloidal-Probe Atomic Force Microscopy. Energy & Fuels, 2018, 32, 9182-9190.	2.5	8
25	Toward the use of CVD-grown MoS ₂ nanosheets as field-emission source. Beilstein Journal of Nanotechnology, 2018, 9, 1686-1694.	1.5	26
26	Fabrication and manipulation of nanopillars using electron induced excitation. Journal of Applied Physics, 2018, 124, .	1.1	5
27	Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device. Physical Chemistry Chemical Physics, 2017, 19, 16989-16999.	1.3	10
28	MoS ₂ –Carbon Nanotube Hybrid Material Growth and Gas Sensing. Advanced Materials Interfaces, 2017, 4, 1700801.	1.9	73
29	Core/Shell Microstructure Induced Synergistic Effect for Efficient Water-Droplet Formation and Cloud-Seeding Application. ACS Nano, 2017, 11, 12318-12325.	7.3	28
30	Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales. Arabian Journal of Geosciences, 2017, 10, 1.	0.6	42
31	An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. Journal of Materials Chemistry A, 2017, 5, 62-66.	5.2	77
32	Large area growth of vertically aligned luminescent MoS ₂ nanosheets. Nanoscale, 2017, 9, 277-287.	2.8	54
33	The Role of III-V Substrate Roughness and Deoxidation Induced by Digital Etch in Achieving Low Resistance Metal Contacts. Crystals, 2017, 7, 177.	1.0	2
34	Effect of rapid thermal annealing on crystallization and stress relaxation of SiGe nanoparticles deposited by ICP PECVD. RSC Advances, 2017, 7, 32087-32092.	1.7	6
35	Electron beam induced rapid crystallization of water splitting nanostructures. MRS Advances, 2016, 1, 825-830.	0.5	13
36	Microstructure and mechanical properties evolutions of alloy 718 during isothermal and thermal cycling over-aging. Materials and Design, 2016, 102, 284-296.	3.3	50

#	Article	IF	CITATIONS
37	Multifunctional redox-tuned viologen-based covalent organic polymers. Journal of Materials Chemistry A, 2016, 4, 15361-15369.	5.2	114
38	Mesoporous γâ€ i ron Oxide Nanoparticles for Magnetically Triggered Release of Doxorubicin and Hyperthermia Treatment. Chemistry - A European Journal, 2016, 22, 17020-17028.	1.7	39
39	Surface plasmon assisted hot electron collection in wafer-scale metallic-semiconductor photonic crystals. Optics Express, 2016, 24, A1234.	1.7	18
40	Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane. Journal of Membrane Science, 2016, 515, 204-211.	4.1	39
41	Modified fluorapatite as highly efficient catalyst for the synthesis of chalcones via Claisen–Schmidt condensation reaction. Journal of Industrial and Engineering Chemistry, 2016, 39, 218-225.	2.9	29
42	Metal/metal-oxide nanocoatings on black silicon nanograss for enhanced solar absorption and photochemical activity. Proceedings of SPIE, 2016, , .	0.8	2
43	Microstructure Evolution during Thermal Aging of Inconel 718. , 2016, , 11-18.		2
44	Viologen-Templated Arrays of Cucurbit[7]uril-Modified Iron Oxide Nanoparticles. Chemistry - A European Journal, 2015, 21, 4473-4473.	1.7	0
45	Characterization of metal contact to III–V materials (Mo/InGaAs). Microelectronic Engineering, 2015, 145, 1-4.	1.1	1
46	Viologenâ€Templated Arrays of Cucurbit[7]urilâ€Modified Ironâ€Oxide Nanoparticles. Chemistry - A European Journal, 2015, 21, 4607-4613.	1.7	24
47	Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. Journal of Materials Chemistry B, 2015, 3, 7237-7245.	2.9	131
48	Characteristics of slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm. Journal of Analytical and Applied Pyrolysis, 2015, 111, 183-190.	2.6	76
49	tests of <mml:math <br="" altimg="si59.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"> <mml:mrow> <mml:mo stretchy="false">ã€^ <mml:mn>0</mml:mn> <mml:mspace <="" td="" width="0.12em"><td>3.8</td><td>34</td></mml:mspace></mml:mo </mml:mrow></mml:math>	3.8	34
50	Nano-Structured Pyrophosphate > -oriented Ni-based superalloys. Acta Materialia, Na ₂ CaP ₂ O ₇ as Catalyst for Selective Synthesis of 1,2-Disubstituted Benzimidazoles in Pure Water. Current Organic Chemistry, 2015 19, 2132-2140	0.9	8
51	Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning. Journal of Nanomaterials, 2014, 2014, 1-7.	1.5	16
52	Synthesis and morphology analysis of electrospun copper nanowires. Journal of Materials Science, 2014, 49, 3052-3065.	1.7	30
53	Electrospun copper oxide nanoparticles as an efficient heterogeneous catalyst for N-arylation of indole. Tetrahedron Letters, 2014, 55, 5973-5975.	0.7	16
54	Dislocation/precipitate interactions in IN100 at 650 °C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 47-54.	2.6	31

#	Article	IF	CITATIONS
55	Synthesis and Gas Transport Properties of Hydroxyl-Functionalized Polyimides with Intrinsic Microporosity. Macromolecules, 2012, 45, 3841-3849.	2.2	193
56	Porosity-induced relaxation of strains in GaN layers studied by means of micro-indentation and optical spectroscopy. Journal of Applied Physics, 2012, 111, .	1.1	28
57	Effect of fine γ′ precipitation on non-isothermal creep and creep-fatigue behaviour of nickel base superalloy MC2. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5295-5302.	2.6	54
58	Fatigue crack growth resistance of a Fe-40Al grade 3 alloy prepared by mechanical alloying and forging. Procedia Engineering, 2010, 2, 1431-1440.	1.2	4
59	Creep–fatigue behavior at high temperature of a UDIMET 720 nickel-base superalloy. International Journal of Fatigue, 2010, 32, 824-829.	2.8	47
60	Fatigue initiation in C35 steel: Influence of loading and defect. International Journal of Fatigue, 2010, 32, 780-787.	2.8	25
61	Low Cycle Fatigue and Cyclic Deformation of TiAl Alloys. Materials Science Forum, 2010, 638-642, 1324-1329.	0.3	0
62	Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions. Philosophical Magazine Letters, 2010, 90, 611-620.	0.5	64
63	Low-cycle fatigue and deformation substructures in an engineering TiAl alloy. Intermetallics, 2007, 15, 520-531.	1.8	29
64	Microstructure–low cycle fatigue behaviour relationships in a PM γ-TiAl alloy. Intermetallics, 2006, 14, 1130-1135.	1.8	10
65	Cyclic deformation mechanisms in a cast gamma titanium aluminide alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 400-401, 409-412.	2.6	17
66	On the role of γ particles within γ′ precipitates on damage accumulation in the P/M nickel-base superalloy N18. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 399, 199-205.	2.6	20
67	Cyclic deformation mechanisms in a gamma titanium aluminide alloy at room temperature. Scripta Materialia, 2005, 52, 107-111.	2.6	22
68	Ageing Characterization of the Power Metallurgy Superalloy N18. , 2004, , .		11
69	Local disordering and reordering phenomena induced by mobile dislocations in short-range-ordered solid solutions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 3045-3054.	0.8	12
70	Observation of dislocation dynamics in the electron microscope. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 309-310, 445-450.	2.6	41
71	In-situatomic force microscopy and transmission electron microscopy observations of the deformation of MC2 nickel-based superalloy γ phase. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 627-638.	0.8	5
72	Dynamic friction stresses in the γ phase of a nickel-based superalloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 2591-2602.	0.8	23

#	Article	IF	CITATIONS
73	Friction stresses in the \hat{I}^3 phase of a nickel-based superalloy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 689-699.	0.8	25
74	Evaluation of friction stresses in the γ phase of a nickel-base superalloy â€~In situ' deformation experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 1041-1044.	2.6	4
75	Order and mechanical properties of the \hat{I}^3 matrix of superalloys. Acta Materialia, 1996, 44, 4917-4926.	3.8	27
76	3D Imaging Using X-Ray Tomography and SEM Combined FIB to Study Non Isothermal Creep Damage of (111) Oriented Samples of γ / I³ ' Nickel Base Single Crystal Superalloy MC2. Materials Science Forum, 0, 706-709, 2400-2405.	0.3	3
77	Sub-microns NaCl-TiO2 Particles to Improve the Rain Enhancement as Cloud Seeding. , 0, , .		1