List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602609/publications.pdf Version: 2024-02-01

		94433	118850
122	4,604	37	62
papers	citations	h-index	g-index
132	132	132	2677
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Spatiotemporal Complexity of Plankton and Fish Dynamics. SIAM Review, 2002, 44, 311-370.	9.5	417
2	Transient phenomena in ecology. Science, 2018, 361, .	12.6	359
3	Wave of Chaos: New Mechanism of Pattern Formation in Spatio-temporal Population Dynamics. Theoretical Population Biology, 2001, 59, 157-174.	1.1	197
4	Allee effect makes possible patchy invasion in a predator-prey system. Ecology Letters, 2002, 5, 345-352.	6.4	146
5	Bifurcations and chaos in a predator-prey system with the Allee effect. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1407-1414.	2.6	137
6	Spatiotemporal complexity of patchy invasion in a predator-prey system with the Allee effect Journal of Theoretical Biology, 2006, 238, 18-35.	1.7	129
7	The Mathematics Behind Biological Invasions. Interdisciplinary Applied Mathematics, 2016, , .	0.3	126
8	Long transients in ecology: Theory and applications. Physics of Life Reviews, 2020, 32, 1-40.	2.8	126
9	Self-organised spatial patterns and chaos in a ratio-dependent predator–prey system. Theoretical Ecology, 2011, 4, 37-53.	1.0	125
10	Variation in individual walking behavior creates the impression of a Lévy flight. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8704-8707.	7.1	116
11	Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecological Complexity, 2004, 1, 37-47.	2.9	104
12	A diffusive SI model with Allee effect and application to FIV. Mathematical Biosciences, 2007, 206, 61-80.	1.9	97
13	Mathematical Modelling of Plankton–Oxygen Dynamics Under the Climate Change. Bulletin of Mathematical Biology, 2015, 77, 2325-2353.	1.9	91
14	Comment on "Lévy Walks Evolve Through Interaction Between Movement and Environmental Complexity― Science, 2012, 335, 918-918.	12.6	84
15	Regimes of biological invasion in a predator?prey system with the Allee effect. Bulletin of Mathematical Biology, 2005, 67, 637-661.	1.9	81
16	Spatiotemporal complexity of biological invasion in a space- and time-discrete predator–prey system with the strong Allee effect. Ecological Complexity, 2012, 9, 16-32.	2.9	79
17	Dispersal in a Statistically Structured Population: Fat Tails Revisited. American Naturalist, 2009, 173, 278-289.	2.1	78
18	Spatiotemporal behavior of a prey–predator system with a group defense for prey. Ecological Complexity, 2013, 14, 37-47.	2.9	77

#	Article	IF	CITATIONS
19	Quantification of the Spatial Aspect of Chaotic Dynamics in Biological and Chemical Systems. Bulletin of Mathematical Biology, 2003, 65, 425-446.	1.9	59
20	Multiscale approach to pest insect monitoring: Random walks, pattern formation, synchronization, and networks. Physics of Life Reviews, 2014, 11, 467-525.	2.8	56
21	Spatio-temporal pattern formation in coupled models of plankton dynamics and fish school motion. Nonlinear Analysis: Real World Applications, 2000, 1, 53-67.	1.7	53
22	An exactly solvable model of population dynamics with density-dependent migrations and the Allee effect. Mathematical Biosciences, 2003, 186, 79-91.	1.9	52
23	An exact solution of a diffusive predator–prey system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 1029-1053.	2.1	50
24	Pattern formation in a space- and time-discrete predator–prey system with a strong Allee effect. Theoretical Ecology, 2012, 5, 341-362.	1.0	50
25	Oscillations and waves in a virally infected plankton system. Ecological Complexity, 2004, 1, 211-223.	2.9	49
26	Pattern Formation, Long-Term Transients, and theÂTuring–Hopf Bifurcation in a Space- and Time-Discrete Predator–Prey System. Bulletin of Mathematical Biology, 2011, 73, 1812-1840.	1.9	48
27	Feeding on Multiple Sources: Towards a Universal Parameterization of the Functional Response of a Generalist Predator Allowing for Switching. PLoS ONE, 2013, 8, e74586.	2.5	47
28	Critical phenomena in plankton communities: KISS model revisited. Nonlinear Analysis: Real World Applications, 2000, 1, 37-51.	1.7	46
29	Numerical study of plankton–fish dynamics in a spatially structured and noisy environment. Ecological Modelling, 2002, 149, 247-255.	2.5	46
30	Patterns of Patchy Spread in Deterministic and Stochastic Models of Biological Invasion and Biological Control. Biological Invasions, 2005, 7, 771-793.	2.4	45
31	Long-term transients and complex dynamics of a stage-structured population with time delay and the Allee effect. Journal of Theoretical Biology, 2016, 396, 116-124.	1.7	44
32	Management implications of long transients in ecological systems. Nature Ecology and Evolution, 2021, 5, 285-294.	7.8	44
33	Computational ecology as an emerging science. Interface Focus, 2012, 2, 241-254.	3.0	43
34	Estimating insect population density from trap counts. Ecological Complexity, 2012, 10, 69-82.	2.9	43
35	Some exact solutions of a generalized Fisher equation related to the problem of biological invasion. Mathematical Biosciences, 2001, 172, 73-94.	1.9	42
36	Diffusive waves, dynamical stabilization and spatio-temporal chaos in a community of three competitive species. Japan Journal of Industrial and Applied Mathematics, 2001, 18, 459-481.	0.9	42

#	Article	IF	CITATIONS
37	Dynamical stabilization of an unstable equilibrium in chemical and biological systems. Mathematical and Computer Modelling, 2002, 36, 307-319.	2.0	41
38	Excitable Population Dynamics, Biological Control Failure, and Spatiotemporal Pattern Formation in a Model Ecosystem. Bulletin of Mathematical Biology, 2009, 71, 863-887.	1.9	40
39	Are time delays always destabilizing? Revisiting the role of time delays and the Allee effect. Theoretical Ecology, 2014, 7, 335-349.	1.0	37
40	Spatio-temporal pattern formation, fractals, and chaos in conceptual ecological models as applied to coupled plankton-fish dynamics. Physics-Uspekhi, 2002, 45, 27-57.	2.2	31
41	Regime shifts and ecological catastrophes in a model of plankton-oxygen dynamics under the climate change. Journal of Theoretical Biology, 2017, 424, 91-109.	1.7	31
42	Analysing the impact of trap shape and movement behaviour of groundâ€dwelling arthropods on trap efficiency. Methods in Ecology and Evolution, 2019, 10, 1246-1264.	5.2	31
43	On a possible origin of the fat-tailed dispersal in population dynamics. Ecological Complexity, 2008, 5, 146-150.	2.9	30
44	Challenges of ecological monitoring: estimating population abundance from sparse trap counts. Journal of the Royal Society Interface, 2012, 9, 420-435.	3.4	29
45	Mathematical Modelling of Spatiotemporal Dynamics of Oxygen in a Plankton System. Mathematical Modelling of Natural Phenomena, 2015, 10, 96-114.	2.4	29
46	Pattern formation in models of plankton dynamics. A synthesis. Oceanologica Acta: European Journal of Oceanology - Revue Europeene De Oceanologie, 2001, 24, 479-487.	0.7	28
47	Oscillations and waves in a virally infected plankton system. Ecological Complexity, 2006, 3, 200-208.	2.9	28
48	Towards resolving the paradox of enrichment: The impact of zooplankton vertical migrations on plankton systems stability. Journal of Theoretical Biology, 2007, 248, 501-511.	1.7	28
49	Global Warming Can Lead to Depletion of Oxygen by Disrupting Phytoplankton Photosynthesis: A Mathematical Modelling Approach. Geosciences (Switzerland), 2018, 8, 201.	2.2	28
50	Effects of stochasticity on the length and behaviour of ecological transients. Journal of the Royal Society Interface, 2021, 18, 20210257.	3.4	25
51	An ecological study of a marine plankton community based on the field data collected from Bay of Bengal. Ecological Modelling, 2006, 193, 589-601.	2.5	22
52	The coarse-grid problem in ecological monitoring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 2933-2953.	2.1	20
53	Multi-scale properties of random walk models of animal movement: lessons from statistical inference. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 468, 1428-1451.	2.1	20
54	Delay driven spatiotemporal chaos in single species population dynamics models. Theoretical Population Biology, 2016, 110, 51-62.	1.1	20

#	Article	IF	CITATIONS
55	Revisiting Brownian motion as a description of animal movement: a comparison to experimental movement data. Methods in Ecology and Evolution, 2016, 7, 1525-1537.	5.2	20
56	Rich Bifurcation Structure of Prey–Predator Model Induced by the Allee Effect in the Growth of Generalist Predator. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050084.	1.7	20
57	Limitation and Regulation of Ecological Populations: a Meta-analysis of <i>Tipula paludosa</i> Field Data. Mathematical Modelling of Natural Phenomena, 2007, 2, 46-62.	2.4	19
58	On the plankton front waves accelerated by marine turbulence. Journal of Marine Systems, 1999, 21, 179-188.	2.1	18
59	Patchy Invasion of Stage-Structured Alien Species with Short-Distance and Long-Distance Dispersal. Bulletin of Mathematical Biology, 2015, 77, 1583-1619.	1.9	17
60	Gypsy moth invasion in North America: A simulation study of the spatial pattern and the rate of spread. Ecological Complexity, 2013, 14, 132-144.	2.9	16
61	Critical Domain Problem for the Reaction–Telegraph Equation Model of Population Dynamics. Mathematics, 2018, 6, 59.	2.2	16
62	Synchronized Dynamics of <i>Tipula paludosa</i> Metapopulation in a Southwestern Scotland Agroecosystem: Linking Pattern to Process. American Naturalist, 2013, 182, 393-409.	2.1	15
63	Fortune favours the brave: Movement responses shape demographic dynamics in strongly competing populations. Journal of Theoretical Biology, 2017, 420, 190-199.	1.7	15
64	Turing instability in an economic–demographic dynamical system may lead to pattern formation on a geographical scale. Journal of the Royal Society Interface, 2021, 18, 20210034.	3.4	15
65	The importance of census times in discrete-time growth-dispersal models. Journal of Biological Dynamics, 2008, 2, 55-63.	1.7	14
66	On time scale invariance of random walks in confined space. Journal of Theoretical Biology, 2015, 367, 230-245.	1.7	14
67	A random walk description of individual animal movement accounting for periods of rest. Royal Society Open Science, 2016, 3, 160566.	2.4	14
68	Towards Building a Sustainable Future: Positioning Ecological Modelling for Impact in Ecosystems Management. Bulletin of Mathematical Biology, 2021, 83, 107.	1.9	14
69	Invasion of a Top Predator into an Epipelagic Ecosystem can bring a Paradoxical Top-Down Trophic Control. Biological Invasions, 2005, 7, 845-861.	2.4	13
70	Effect of complex landscape geometry on the invasive species spread: Invasion with stepping stones. Journal of Theoretical Biology, 2019, 464, 85-97.	1.7	13
71	Knowledge gaps and missing links in understanding mass extinctions: Can mathematical modeling help?. Physics of Life Reviews, 2022, 41, 22-57.	2.8	13
72	SPATIO-TEMPORAL CHAOS IN AN ECOLOGICAL COMMUNITY AS A RESPONSE TO UNFAVOURABLE ENVIRONMENTAL CHANGES. International Journal of Modeling, Simulation, and Scientific Computing, 2001, 04, 227-249.	1.4	12

#	Article	IF	CITATIONS
73	Behaviourally structured populations persist longer under harsh environmental conditions. Ecology Letters, 2003, 6, 455-462.	6.4	12
74	Consequences of the Allee Effect and Intraspecific Competition on Population Persistence under Adverse Environmental Conditions. Bulletin of Mathematical Biology, 2008, 70, 412-437.	1.9	12
75	On the Consistency of the Reaction-Telegraph Process Within Finite Domains. Journal of Statistical Physics, 2019, 177, 569-587.	1.2	12
76	Spatiotemporal pattern formation in 2D prey-predator system with nonlocal intraspecific competition. Communications in Nonlinear Science and Numerical Simulation, 2021, 93, 105478.	3.3	12
77	Increased Coupling Between Subpopulations in a Spatially Structured Environment Can Lead to Population Outbreaks. Journal of Theoretical Biology, 2001, 212, 549-562.	1.7	11
78	Noise can prevent onset of chaos in spatiotemporal population dynamics. European Physical Journal B, 2010, 78, 253-264.	1.5	11
79	Noise-induced suppression of periodic travelling waves in oscillatory reaction–diffusion systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 1903-1917.	2.1	11
80	Some analytical and numerical approaches to understanding trap counts resulting from pest insect immigration. Mathematical Biosciences, 2015, 263, 143-160.	1.9	11
81	Dynamics of Biological Invasions. Interdisciplinary Applied Mathematics, 2016, , 19-68.	0.3	11
82	Effect of density-dependent individual movement on emerging spatial population distribution: Brownian motion vs Levy flights. Journal of Theoretical Biology, 2019, 464, 159-178.	1.7	11
83	Statistical mechanics of animal movement: Animals's decision-making can result in superdiffusive spread. Ecological Complexity, 2015, 22, 86-92.	2.9	10
84	Oscillations and Pattern Formation in a Slow–Fast Prey–Predator System. Bulletin of Mathematical Biology, 2021, 83, 110.	1.9	10
85	Time Dependent Diffusion as a Mean Field Counterpart of Lévy Type Random Walk. Mathematical Modelling of Natural Phenomena, 2015, 10, 5-26.	2.4	9
86	How animals move along? Exactly solvable model of superdiffusive spread resulting from animal's decision making. Journal of Mathematical Biology, 2016, 73, 227-255.	1.9	9
87	Pattern, process, scale, and model's sensitivity. Physics of Life Reviews, 2016, 19, 131-134.	2.8	9
88	Canards, relaxation oscillations, and pattern formation in a slow-fast ratio-dependent predator-prey system. Applied Mathematical Modelling, 2022, 109, 519-535.	4.2	9
89	Catching ghosts with a coarse net: use and abuse of spatial sampling data in detecting synchronization. Journal of the Royal Society Interface, 2017, 14, 20160855.	3.4	8
90	Patchy, not patchy, or how much patchy? Classification of spatial patterns appearing in a model of biological invasion. Mathematical Modelling of Natural Phenomena, 2017, 12, 208-225.	2.4	8

#	Article	IF	CITATIONS
91	Approximate determination of the magnitude of the critical size in the problem of the evolution of an impact. Journal of Engineering Physics and Thermophysics, 1994, 66, 346-352.	0.6	7
92	Biodiversity measures revisited. Ecological Complexity, 2006, 3, 13-22.	2.9	7
93	Pattern Formation in a Model Oxygen-Plankton System. Computation, 2018, 6, 59.	2.0	7
94	Towards the Development of a More Accurate Monitoring Procedure for Invertebrate Populations, in the Presence of an Unknown Spatial Pattern of Population Distribution in the Field. Insects, 2018, 9, 29.	2.2	7
95	Locomotor behaviour promotes stability of the patchy distribution of slugs in arable fields: Tracking the movement of individual Deroceras reticulatum. Pest Management Science, 2020, 76, 2944-2952.	3.4	7
96	A random acceleration model of individual animal movement allowing for diffusive, superdiffusive and superballistic regimes. Scientific Reports, 2017, 7, 14364.	3.3	6
97	The "Lévy or Diffusion―Controversy: How Important Is the Movement Pattern in the Context of Trapping?. Mathematics, 2018, 6, 77.	2.2	6
98	Movement patterns of the grey field slug (Deroceras reticulatum) in an arable field. Scientific Reports, 2020, 10, 17970.	3.3	6
99	Nonlocal Reaction–Diffusion Models of Heterogeneous Wealth Distribution. Mathematics, 2021, 9, 351.	2.2	6
100	Effect of Slow–Fast Time Scale on Transient Dynamics in a Realistic Prey-Predator System. Mathematics, 2022, 10, 699.	2.2	6
101	Patterns of invasive species spread in a landscape with a complex geometry. Ecological Complexity, 2018, 33, 93-105.	2.9	5
102	An economic-demographic dynamical system. Mathematical Modelling of Natural Phenomena, 2018, 13, 27.	2.4	5
103	Investigation into the Critical Domain Problem for the Reaction-Telegraph Equation Using Advanced Numerical Algorithms. International Journal of Applied and Computational Mathematics, 2019, 5, 1.	1.6	5
104	Stability of a planetary climate system with the biosphere species competing for resources. Physical Review E, 2021, 103, 022202.	2.1	5
105	Modelling Population Dynamics of Social Protests in Time and Space: The Reaction-Diffusion Approach. Mathematics, 2020, 8, 78.	2.2	4
106	Numerical Study of Pest Population Size at Various Diffusion Rates. Lecture Notes in Mathematics, 2013, , 355-385.	0.2	3
107	Stability of Patches of Higher Population Density within the Heterogenous Distribution of the Gray Field Slug Deroceras reticulatum in Arable Fields in the UK. Insects, 2021, 12, 9.	2.2	3
108	Collective dynamics: when one plus one does not make two. Mathematical Medicine and Biology, 2011, 28, 85-88.	1.2	2

#	Article	IF	CITATIONS
109	Multiscale ecology of agroecosystems is an emerging research field that can provide a stronger theoretical background for the integrated pest management. Physics of Life Reviews, 2014, 11, 536-539.	2.8	2
110	Reaction–Diffusion Models: Single Species. Interdisciplinary Applied Mathematics, 2016, , 69-105.	0.3	2
111	Long living transients: Enfant terrible of ecological theory?. Physics of Life Reviews, 2020, 32, 55-58.	2.8	2
112	A predictive model and a field study on heterogeneous slug distribution in arable fields arising from density dependent movement. Scientific Reports, 2022, 12, 2274.	3.3	2
113	Analysis of simulated trap counts arising from correlated and biased random walks. Ecological Modelling, 2022, 470, 110016.	2.5	2
114	Mathematical Models of Pattern Formation in Planktonic Predation-Diffusion Systems: A Review. , 2008, , 1-26.		1
115	Progress in Mathematical Ecology. Mathematics, 2018, 6, 167.	2.2	1
116	Numerical Analysis for the Fractional Ambartsumian Equation via the Homotopy Herturbation Method. Mathematics, 2020, 8, 2247.	2.2	1
117	Metapopulation Persistence and Extinction in a Fragmented Random Habitat: A Simulation Study. Mathematics, 2021, 9, 2202.	2.2	1
118	Patterns in Models of Plankton Dynamics in a Heterogeneous Environment. , 2003, , 401-410.		1
119	Invasion in a Multispecies System. Interdisciplinary Applied Mathematics, 2016, , 107-154.	0.3	1
120	Responding to Invasions: Detection, Control, and Adaptation. Interdisciplinary Applied Mathematics, 2016, , 287-305.	0.3	0
121	Long-Distance Dispersal and Spread. Interdisciplinary Applied Mathematics, 2016, , 155-193.	0.3	0
122	Global Warming Can Result in Global Anoxia by Disrupting Phytoplankton Photosynthesis. , 2021, , 243-249.		0