
Mark Wainwright

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026084/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenothiazinium dyes for photodynamic treatment present lower environmental risk compared to a formulation of trifloxystrobin and tebuconazole. Journal of Photochemistry and Photobiology B: Biology, 2022, 226, 112365.	3.8	5
2	In vitro and in vivo photodynamic efficacies of novel and conventional phenothiazinium photosensitizers against multidrug-resistant Candida auris. Photochemical and Photobiological Sciences, 2022, 21, 1807-1818.	2.9	5
3	LASER in periodontal treatment: is it an effective treatment or science fiction?. Brazilian Oral Research, 2021, 35, e099.	1.4	20
4	Comparative study between photodynamic therapy with urucum + Led and probiotics in halitosis reduction–protocol for a controlled clinical trial. PLoS ONE, 2021, 16, e0247096.	2.5	2
5	Comparative effects of different phenothiazine photosensitizers on experimental periodontitis treatment. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102198.	2.6	11
6	Anti-infective dyes in the time of COVID. Dyes and Pigments, 2021, 196, 109813.	3.7	9
7	Photodynamic inactivation of Candida albicans and Candida tropicalis with aluminum phthalocyanine chloride nanoemulsion. Fungal Biology, 2020, 124, 297-303.	2.5	11
8	Light-based technologies for management of COVID-19 pandemic crisis. Journal of Photochemistry and Photobiology B: Biology, 2020, 212, 111999.	3.8	61
9	Inhibitory action of phenothiazinium dyes against Neospora caninum. Scientific Reports, 2020, 10, 7483.	3.3	12
10	Antimicrobial photodynamic therapy mediated by methylene blue in surfactant vehicle on periodontopathogens. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101784.	2.6	14
11	Global priority multidrug-resistant pathogens do not resist photodynamic therapy. Journal of Photochemistry and Photobiology B: Biology, 2020, 208, 111893.	3.8	73
12	Antimicrobial photodynamic therapy compared to systemic antibiotic therapy in non-surgical treatment of periodontitis: Systematic review and meta-analysis. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101808.	2.6	22
13	Effects of butyl toluidine blue photosensitizer on antimicrobial photodynamic therapy for experimental periodontitis treatment in rats. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101868.	2.6	10
14	A New Penicillin?. Antibiotics, 2020, 9, 117.	3.7	4
15	Chemical features of the photosensitizers new methylene blue N and S137 influence their subcellular localization and photoinactivation efficiency in Candida albicans. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111942.	3.8	6
16	Inactivation kinetics and lethal dose analysis of antimicrobial blue light and photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2019, 28, 186-191.	2.6	36
17	Phenothiazinium Dyes Are Active against <i>Trypanosoma cruzi</i> In Vitro. BioMed Research International, 2019, 2019, 1-9.	1.9	7
18	Photoantimicrobials and PACT: what's in an abbreviation?. Photochemical and Photobiological Sciences, 2019, 18, 12-14.	2.9	18

#	Article	IF	CITATIONS
19	Synthesis and photophysical properties of <i>meso</i> â€aminophenylâ€substituted heptamethine dyes as potential leads to new contrast agents. Coloration Technology, 2019, 135, 305-311.	1.5	4
20	Parameters for antimicrobial photodynamic therapy on periodontal pocket—Randomized clinical trial. Photodiagnosis and Photodynamic Therapy, 2019, 27, 132-136.	2.6	28
21	Multiple aPDT sessions on periodontitis in rats treated with chemotherapy: histomorphometrical, immunohistochemical, immunological and microbiological analyses. Photodiagnosis and Photodynamic Therapy, 2019, 25, 92-102.	2.6	16
22	Antimicrobial photodynamic therapy with phenothiazinium photosensitizers in non-vertebrate model Galleria mellonella infected with Fusarium keratoplasticum and Fusarium moniliforme. Photodiagnosis and Photodynamic Therapy, 2019, 25, 197-203.	2.6	23
23	Influence of antimicrobial photodynamic therapy as an adjunctive to scaling and root planing on alveolar bone loss: A systematic review and meta-analysis of animal studies. Photodiagnosis and Photodynamic Therapy, 2019, 25, 354-363.	2.6	11
24	InÂvitro susceptibilities of Neoscytalidium spp. sequence types to antifungal agents and antimicrobial photodynamic treatment with phenothiazinium photosensitizers. Fungal Biology, 2018, 122, 436-448.	2.5	21
25	Photoactive plants: Botany bad boys or horticultural heroes?. Phytotherapy Research, 2018, 32, 561-563.	5.8	Ο
26	Photosensitized Membrane Permeabilization Requires Contact-Dependent Reactions between Photosensitizer and Lipids. Journal of the American Chemical Society, 2018, 140, 9606-9615.	13.7	133
27	Synthetic, small-molecule photoantimicrobials – a realistic approach. Photochemical and Photobiological Sciences, 2018, 17, 1767-1779.	2.9	8
28	Permeability of DOPC bilayers under photoinduced oxidation: Sensitivity to photosensitizer. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 2366-2373.	2.6	11
29	Dyes, flies, and sunny skies: photodynamic therapy and neglected tropical diseases. Coloration Technology, 2017, 133, 3-14.	1.5	12
30	Photodynamic inactivation of conidia of the fungus Colletotrichum abscissum on Citrus sinensis plants with methylene blue under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2017, 176, 54-61.	3.8	34
31	The problem with dyes in infection control. Dyes and Pigments, 2017, 146, 402-407.	3.7	11
32	Rational design of phenothiazinium derivatives and photoantimicrobial drug discovery. Dyes and Pigments, 2017, 136, 590-600.	3.7	44
33	Photoantimicrobials—are we afraid of the light?. Lancet Infectious Diseases, The, 2017, 17, e49-e55.	9.1	498
34	Photodynamic treatment with phenothiazinium photosensitizers kills both ungerminated and germinated microconidia of the pathogenic fungi Fusarium oxysporum, Fusarium moniliforme and Fusarium solani. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 1-12.	3.8	30
35	Inactivation of plant-pathogenic fungus Colletotrichum acutatum with natural plant-produced photosensitizers under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 402-411.	3.8	34
36	The effects of photodynamic treatment with new methylene blue N on the Candida albicans proteome. Photochemical and Photobiological Sciences, 2016, 15, 1503-1513.	2.9	27

#	Article	IF	CITATIONS
37	Phenothiazinium photosensitisers XI. Improved toluidine blue photoantimicrobials. Journal of Photochemistry and Photobiology B: Biology, 2016, 160, 68-71.	3.8	22
38	Laser-guided magic bullets—A non-antibiotic answer to O'Neill. Photodiagnosis and Photodynamic Therapy, 2016, 13, A1-A2.	2.6	1
39	Synthesis, characterization and biological evaluation of a new photoactive hydrogel against Gram-positive and Gram-negative bacteria. Journal of Materials Chemistry B, 2016, 4, 1499-1509.	5.8	29
40	Small scale trial of photodynamic treatment of onychomycosis in São Paulo. Journal of Photochemistry and Photobiology B: Biology, 2015, 150, 66-68.	3.8	32
41	Phenothiazinium photoantimicrobials with basic side chains. Journal of Photochemistry and Photobiology B: Biology, 2015, 150, 38-43.	3.8	26
42	<i>In Vitro</i> Photodynamic Inactivation of Plant-Pathogenic Fungi Colletotrichum acutatum and Colletotrichum gloeosporioides with Novel Phenothiazinium Photosensitizers. Applied and Environmental Microbiology, 2014, 80, 1623-1632.	3.1	54
43	In defence of â€~dye therapy'. International Journal of Antimicrobial Agents, 2014, 44, 26-29.	2.5	27
44	Membrane Damage Efficiency of Phenothiazinium Photosensitizers. Photochemistry and Photobiology, 2014, 90, 801-813.	2.5	74
45	Furocoumarins and coumarins photoinactivate Colletotrichum acutatum and Aspergillus nidulans fungi under solar radiation. Journal of Photochemistry and Photobiology B: Biology, 2014, 131, 74-83.	3.8	48
46	In vitro photodynamic inactivation of Candida species and mouse fibroblasts with phenothiazinium photosensitisers and red light. Photodiagnosis and Photodynamic Therapy, 2013, 10, 141-149.	2.6	60
47	Photobactericides—A Local Option against Multi-Drug Resistant Bacteria. Antibiotics, 2013, 2, 182-190.	3.7	5
48	Photodynamic medicine and infection control. Journal of Antimicrobial Chemotherapy, 2012, 67, 787-788.	3.0	34
49	Susceptibilities of the dermatophytes Trichophyton mentagrophytes and T. rubrum microconidia to photodynamic antimicrobial chemotherapy with novel phenothiazinium photosensitizers and red light. Journal of Photochemistry and Photobiology B: Biology, 2012, 116, 89-94.	3.8	52
50	Local clinical phototreatment of herpes infection in São Paulo. Photodiagnosis and Photodynamic Therapy, 2012, 9, 118-121.	2.6	13
51	N3,N7-diaminophenothiazinium derivatives as antagonists of α7-nicotinic acetylcholine receptors expressed in Xenopus oocytes. Pharmacological Research, 2012, 66, 213-218.	7.1	5
52	Comparative Photodynamic Evaluation of New Phenothiazinium Derivatives against <i>Propionibacterium acnes</i> ^{â€} . Photochemistry and Photobiology, 2012, 88, 523-526.	2.5	19
53	The application of photosensitisers to tropical pathogens in the blood supply. Photodiagnosis and Photodynamic Therapy, 2011, 8, 240-248.	2.6	20
54	Championing photoantimicrobial discovery. Photodiagnosis and Photodynamic Therapy, 2011, 8, 288-9; author reply 289-90.	2.6	1

#	Article	IF	CITATIONS
55	Antimicrobial Photodynamic Therapy in the Colon: Delivering a Light Punch to the Guts?. Photochemistry and Photobiology, 2011, 87, 754-756.	2.5	4
56	The use of photosensitisers in acne treatment. Journal of Photochemistry and Photobiology B: Biology, 2011, 105, 1-5.	3.8	20
57	On the 75th anniversary of Prontosil. Dyes and Pigments, 2011, 88, 231-234.	3.7	45
58	Phenothiazinium photosensitisers IX. Tetra- and pentacyclic derivatives as photoantimicrobial agents. Dyes and Pigments, 2011, 91, 1-5.	3.7	24
59	Phenothiazinium photosensitisers VII: Novel substituted asymmetric N-benzylphenothiaziniums as photoantimicrobial agents. Journal of Photochemistry and Photobiology B: Biology, 2010, 99, 74-77.	3.8	10
60	Therapeutic applications of nearâ€infrared dyes. Coloration Technology, 2010, 126, 115-126.	1.5	43
61	Phenothiazinium–fluoroquinolone drug conjugates. International Journal of Antimicrobial Agents, 2010, 35, 405-409.	2.5	14
62	â€~Safe' photoantimicrobials for skin and soft-tissue infections. International Journal of Antimicrobial Agents, 2010, 36, 14-18.	2.5	42
63	Phenothiazinium photosensitisers, Part VI: Photobactericidal asymmetric derivatives. Dyes and Pigments, 2009, 82, 387-391.	3.7	35
64	Photoantimicrobials—So what's stopping us?. Photodiagnosis and Photodynamic Therapy, 2009, 6, 167-169.	2.6	39
65	Dyes in the development of drugs and pharmaceuticals. Dyes and Pigments, 2008, 76, 582-589.	3.7	109
66	Photodynamic Therapy: The Development of New Photosensitisers. Anti-Cancer Agents in Medicinal Chemistry, 2008, 8, 280-291.	1.7	109
67	Phenothiazinium derivatives for pathogen inactivation in blood products. Journal of Photochemistry and Photobiology B: Biology, 2007, 86, 45-58.	3.8	114
68	Phenothiazinium photosensitisers: V. Photobactericidal activities of chromophore-methylated phenothiazinium salts. Dyes and Pigments, 2007, 73, 7-12.	3.7	32
69	Phenothiazinium-based photobactericidal materials. Journal of Photochemistry and Photobiology B: Biology, 2006, 84, 227-230.	3.8	71
70	Review: The phenothiazinium chromophore and the evolution of antimalarial drugs. Tropical Medicine and International Health, 2005, 10, 501-511.	2.3	90
71	The development of phenothiazinium photosensitisers. Photodiagnosis and Photodynamic Therapy, 2005, 2, 263-272.	2.6	104
72	Photosensitising agents—circumventing resistance and breaking down biofilms: a review. International Biodeterioration and Biodegradation, 2004, 53, 119-126.	3.9	156

#	Article	IF	CITATIONS
73	Photodynamic therapy – from dyestuffs to high–tech clinical practice. Review of Progress in Coloration and Related Topics, 2004, 34, 95-109.	0.2	20
74	Phenothiazinium photosensitisers: choices in synthesis and application. Dyes and Pigments, 2003, 57, 245-257.	3.7	126
75	Local treatment of viral disease using photodynamic therapy. International Journal of Antimicrobial Agents, 2003, 21, 510-520.	2.5	95
76	Pathogen Inactivation in Blood Products. Current Medicinal Chemistry, 2002, 9, 127-143.	2.4	68
77	The Use of New Methylene Blue inPseudomonas aeruginosaBiofilm Destruction. Biofouling, 2002, 18, 247-249.	2.2	17
78	The emerging chemistry of blood product disinfection. Chemical Society Reviews, 2002, 31, 128-136.	38.1	53
79	Extended conjugation in di- and tri-arylmethane dyes. Part 5. Vinylogues and ethynologues of Victoria Blue. Dyes and Pigments, 2000, 47, 129-142.	3.7	12
80	Extended conjugation in di- and tri-arylmethane dyes. Part 4. Steric and electronic effects in analogues of Malachite Green containing a 2H-1-benzopyran unit. Perkin Transactions II RSC, 2000, , 263-269.	1.1	8
81	Methylene blue derivatives — suitable photoantimicrobials for blood product disinfection?. International Journal of Antimicrobial Agents, 2000, 16, 381-394.	2.5	135
82	Extended conjugation in di- and tri- arylmethane dyes. Part 3. The effects of increased planarity in Victoria Blue dyes. Dyes and Pigments, 1999, 40, 151-156.	3.7	7
83	Phenothiazine photosensitizers: part 2. 3,7-Bis(arylamino)phenothiazines1See Ref.[1].1. Dyes and Pigments, 1999, 42, 45-51.	3.7	38
84	Uptake and cell-killing activities of a series of Victoria blue derivatives in a mouse mammary tumour cell line. Cytotechnology, 1999, 29, 35-43.	1.6	14
85	Apoptosis induction by different pathways with methylene blue derivative and light from mitochondrial sites in V79 cells. , 1998, 75, 941-948.		69
86	Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation. Journal of Photochemistry and Photobiology B: Biology, 1997, 40, 233-239.	3.8	157
87	Investigations of a series of novel cationic photosensitisers and their potential use in photodynamic therapy. Biochemical Society Transactions, 1995, 23, 260S-260S.	3.4	0
88	Biodistribution of a methylene blue derivative in tumor and normal tissues of rats. Journal of Photochemistry and Photobiology B: Biology, 1993, 20, 63-71.	3.8	24
89	Dyes and Stains. , 0, , 13-26.		0