
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6025345/publications.pdf Version: 2024-02-01



5

| #  | Article                                                                                                                                                                                                           | IF          | CITATIONS    |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| 1  | Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature<br>Plants, 2015, 1, 15160.                                                                                      | 4.7         | 294          |
| 2  | Forest resilience to drought varies across biomes. Global Change Biology, 2018, 24, 2143-2158.                                                                                                                    | 4.2         | 267          |
| 3  | Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and Forest Meteorology, 2011, 151, 1800-1811.                                   | 1.9         | 239          |
| 4  | Spatial analysis of rainfall trends in the region of Valencia (east Spain). International Journal of<br>Climatology, 2000, 20, 1451-1469.                                                                         | 1.5         | 220          |
| 5  | Precipitation concentration changes in Spain 1946–2005. Natural Hazards and Earth System Sciences, 2011, 11, 1259-1265.                                                                                           | 1.5         | 207          |
| 6  | Bioclimatology of beech ( <i>Fagus sylvatica</i> L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a treeâ€ring network. Journal of Biogeography, 2007, 34, 1873-1892.         | 1.4         | 175          |
| 7  | Factors influencing fire behaviour in shrublands of different stand ages and the implications for<br>using prescribed burning to reduce wildfire risk. Journal of Environmental Management, 2002, 65,<br>199-208. | 3.8         | 159          |
| 8  | Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees - Structure and Function, 2008, 22, 749-758.                        | 0.9         | 151          |
| 9  | Changes in seasonal precipitation in the Iberian Peninsula during 1946–2005. Global and Planetary<br>Change, 2010, 74, 27-33.                                                                                     | 1.6         | 147          |
| 10 | Monthly precipitation trends on the Mediterranean fringe of the Iberian Peninsula during the<br>secondâ€half of the twentieth century (1951–2000). International Journal of Climatology, 2009, 29,<br>1415-1429.  | 1.5         | 144          |
| 11 | drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Climate Research, 2004, 26, 5-15.                                                                                                | 0.4         | 139          |
| 12 | A new tool for monthly precipitation analysis in Spain: MOPREDAS database (monthly precipitation) Tj ETQq0 0 (                                                                                                    | ) rgBT /Ove | erlock 10 Tf |
| 13 | Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites.<br>Agricultural and Forest Meteorology, 2013, 180, 142-151.                                                   | 1.9         | 136          |
| 14 | Seasonal Dynamics of Wood Formation in Pinus Halepensis from Dry and Semi-Arid Ecosystems in Spain. IAWA Journal, 2007, 28, 389-404.                                                                              | 2.7         | 135          |
| 15 | A review of daily soil erosion in Western Mediterranean areas. Catena, 2007, 71, 193-199.                                                                                                                         | 2.2         | 134          |
| 16 | INTRA-ANNUAL DENSITY FLUCTUATIONS IN TREE RINGS: HOW, WHEN, WHERE, AND WHY?. IAWA Journal, 2016, 37, 232-259.                                                                                                     | 2.7         | 119          |

| 17 | Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland.<br>Forest Ecology and Management, 2001, 147, 25-37.                                                                                                   | 1.4 | 117 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
| 18 | Photoperiod and temperature as dominant environmental drivers triggering secondary growth<br>resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences of the<br>United States of America, 2020, 117, 20645-20652. | 3.3 | 113 |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Seasonal precipitation trends in the Mediterranean Iberian Peninsula in second half of 20th century.<br>International Journal of Climatology, 2009, 29, 1312-1323.                                                 | 1.5 | 107       |
| 20 | Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia, 2011, 29, 163-169.                                                           | 1.0 | 103       |
| 21 | Plasticity in Dendroclimatic Response across the Distribution Range of Aleppo Pine (Pinus halepensis).<br>PLoS ONE, 2013, 8, e83550.                                                                               | 1.1 | 100       |
| 22 | Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands. International<br>Journal of Wildland Fire, 2004, 13, 79.                                                                         | 1.0 | 98        |
| 23 | Evidence for the spatial segregation hypothesis: a test with nineâ€year survivorship data in a<br>Mediterranean shrubland. Ecology, 2010, 91, 2110-2120.                                                           | 1.5 | 96        |
| 24 | Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology, 2018, 38, 173-185.                                                                       | 1.4 | 93        |
| 25 | Size mediated climate–growth relationships in Pinus halepensis and Pinus pinea. Trees - Structure and Function, 2009, 23, 1065-1073.                                                                               | 0.9 | 90        |
| 26 | Fireâ€induced deforestation in droughtâ€prone Mediterranean forests: drivers and unknowns from<br>leaves to communities. Ecological Monographs, 2018, 88, 141-169.                                                 | 2.4 | 90        |
| 27 | Cambial activity, wood formation and sapling survival of Pinus halepensis exposed to different<br>irrigation regimes. Forest Ecology and Management, 2011, 262, 1630-1638.                                         | 1.4 | 89        |
| 28 | Climate-change-driven growth decline of European beech forests. Communications Biology, 2022, 5,<br>163.                                                                                                           | 2.0 | 89        |
| 29 | Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land<br>Degradation and Development, 2003, 14, 203-213.                                                                     | 1.8 | 87        |
| 30 | Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees - Structure and<br>Function, 2012, 26, 1091-1100.                                                                          | 0.9 | 84        |
| 31 | Contribution of the largest events to suspended sediment transport across the USA. Land<br>Degradation and Development, 2010, 21, 83-91.                                                                           | 1.8 | 81        |
| 32 | Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiology, 2014, 34, 869-881.                              | 1.4 | 79        |
| 33 | Evaluation of forest cover change using remote sensing techniques and landscape metrics in<br>Moncayo Natural Park (Spain). Applied Geography, 2015, 62, 247-255.                                                  | 1.7 | 78        |
| 34 | Resist, recover or both? Growth plasticity in response to drought is geographically structured and<br>linked to intraspecific variability in <i>Pinus pinaster</i> . Journal of Biogeography, 2018, 45, 1126-1139. | 1.4 | 77        |
| 35 | Drought legacies are short, prevail in dry conifer forests and depend on growth variability. Journal of Ecology, 2020, 108, 2473-2484.                                                                             | 1.9 | 74        |
| 36 | ls rainfall erosivity increasing in the Mediterranean Iberian Peninsula?. Land Degradation and<br>Development, 2010, 21, 139-144.                                                                                  | 1.8 | 72        |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Structure and Function of Intra–Annual Density Fluctuations: Mind the Gaps. Frontiers in Plant<br>Science, 2016, 7, 595.                                                                                               | 1.7 | 72        |
| 38 | Desiccation and Mortality Dynamics in Seedlings of Different European Beech (Fagus sylvatica L.)<br>Populations under Extreme Drought Conditions. Frontiers in Plant Science, 2016, 7, 751.                            | 1.7 | 72        |
| 39 | Chilling and forcing temperatures interact to predict the onset of wood formation in Northern<br>Hemisphere conifers. Global Change Biology, 2019, 25, 1089-1105.                                                      | 4.2 | 72        |
| 40 | SPREAD: a high-resolution daily gridded precipitation dataset for Spain – an extreme events frequency and intensity overview. Earth System Science Data, 2017, 9, 721-738.                                             | 3.7 | 70        |
| 41 | Continuously missing outer rings in woody plants at their distributional margins.<br>Dendrochronologia, 2012, 30, 213-222.                                                                                             | 1.0 | 69        |
| 42 | Daily rainfall trend in the Valencia Region of Spain. Theoretical and Applied Climatology, 2003, 75, 117-130.                                                                                                          | 1.3 | 66        |
| 43 | Climatic signals in tree-ring widths and wood structure of Pinus halepensis in contrasted environmental conditions. Trees - Structure and Function, 2013, 27, 927-936.                                                 | 0.9 | 65        |
| 44 | Spatial distribution of seasonal rainfall trends in a western Mediterranean area. International<br>Journal of Climatology, 2001, 21, 843-860.                                                                          | 1.5 | 64        |
| 45 | EARLY TO RISE MAKES A PLANT HEALTHY, WEALTHY, AND WISE. Ecology, 2008, 89, 3061-3071.                                                                                                                                  | 1.5 | 63        |
| 46 | Spatio-temporal assessment of beech growth in relation to climate extremes in Slovenia – An<br>integrated approach using remote sensing and tree-ring data. Agricultural and Forest Meteorology,<br>2020, 287, 107925. | 1.9 | 61        |
| 47 | Spatioâ€ŧemporal variability of daily precipitation concentration in Spain based on a highâ€ŧesolution gridded data set. International Journal of Climatology, 2018, 38, e518.                                         | 1.5 | 59        |
| 48 | Leaf <i>δ</i> <sup>18</sup> 0 of remaining trees is affected by thinning intensity in a semiarid pine forest. Plant, Cell and Environment, 2011, 34, 1009-1019.                                                        | 2.8 | 58        |
| 49 | Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a<br>Regional Scale. Frontiers in Plant Science, 2016, 7, 579.                                                              | 1.7 | 58        |
| 50 | Age, climate and intra-annual density fluctuations in Pinus halepensis in Spain. IAWA Journal, 2013, 34,<br>459-474.                                                                                                   | 2.7 | 54        |
| 51 | Growing season and radial growth predicted for Fagus sylvatica under climate change. Climatic Change, 2019, 153, 181-197.                                                                                              | 1.7 | 54        |
| 52 | Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different<br>local conditions. Frontiers in Plant Science, 2015, 6, 730.                                                       | 1.7 | 53        |
| 53 | Which matters most for the formation of intra-annual density fluctuations in Pinus pinaster: age or size?. Trees - Structure and Function, 2015, 29, 237-245.                                                          | 0.9 | 52        |
| 54 | Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Regional<br>Environmental Change, 2014, 14, 1801-1810.                                                                                  | 1.4 | 51        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A regional analysis of the effects of largest events on soil erosion. Catena, 2012, 95, 85-90.                                                                                                               | 2.2 | 49        |
| 56 | When, How and How Much: Gender-specific Resource-use Strategies in the Dioecious Tree Juniperus thurifera. Annals of Botany, 2006, 98, 885-889.                                                              | 1.4 | 48        |
| 57 | Reconstructing dry and wet summers in SE Slovenia from oak tree-ring series. International Journal of Biometeorology, 2008, 52, 607-615.                                                                     | 1.3 | 48        |
| 58 | Spatial variability in large-scale and regional atmospheric drivers of Pinus halepensis growth in eastern Spain. Agricultural and Forest Meteorology, 2011, 151, 1106-1119.                                  | 1.9 | 48        |
| 59 | Living on the Edge: Contrasted Wood-Formation Dynamics in Fagus sylvatica and Pinus sylvestris under Mediterranean Conditions. Frontiers in Plant Science, 2016, 7, 370.                                     | 1.7 | 47        |
| 60 | An R package for daily precipitation climate series reconstruction. Environmental Modelling and Software, 2017, 89, 190-195.                                                                                 | 1.9 | 47        |
| 61 | Annual Cambial Rhythm in Pinus halepensis and Pinus sylvestris as Indicator for Climate Adaptation.<br>Frontiers in Plant Science, 2016, 07, 1923.                                                           | 1.7 | 46        |
| 62 | Effects of the largest daily events on total soil erosion by rainwater. An analysis of the USLE database. Earth Surface Processes and Landforms, 2009, 34, 2070-2077.                                        | 1.2 | 45        |
| 63 | Post-fire vegetation succession inÂMediterranean gorse shrublands. Acta Oecologica, 2006, 30, 54-61.                                                                                                         | 0.5 | 44        |
| 64 | A 548-Year Tree-Ring Chronology of Oak (Quercus spp.) for Southeast Slovenia and its Significance as a<br>Dating Tool and Climate Archive. Tree-Ring Research, 2008, 64, 3-15.                               | 0.4 | 43        |
| 65 | Drought Sensitiveness on Forest Growth in Peninsular Spain and the Balearic Islands. Forests, 2018, 9, 524.                                                                                                  | 0.9 | 43        |
| 66 | Precipitation trends in Spanish hydrological divisions, 1946–2005. Climate Research, 2010, 43, 215-228.                                                                                                      | 0.4 | 42        |
| 67 | Common climatic signals affecting oak tree-ring growth in SE Central Europe. Trees - Structure and Function, 2014, 28, 1267-1277.                                                                            | 0.9 | 41        |
| 68 | Tree-ring-based drought reconstruction in the Iberian Range (east of Spain) since 1694. International<br>Journal of Biometeorology, 2016, 60, 361-372.                                                       | 1.3 | 40        |
| 69 | Summer drought and spring frost, but not their interaction, constrain European beech and Silver fir<br>growth in their southern distribution limits. Agricultural and Forest Meteorology, 2019, 278, 107695. | 1.9 | 40        |
| 70 | Temporal and spatial differentiation in seedling emergence may promote species coexistence in<br>Mediterranean fireâ€prone ecosystems. Ecography, 2008, 31, 620-629.                                         | 2.1 | 39        |
| 71 | STEAD: a high-resolution daily gridded temperature dataset for Spain. Earth System Science Data, 2019, 11, 1171-1188.                                                                                        | 3.7 | 39        |
| 72 | Frequency and variability of missing tree rings along the stems of Pinus halepensis and Pinus pinea from a semiarid site in SE Spain. Journal of Arid Environments, 2011, 75, 494-498.                       | 1.2 | 37        |

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Factors driving growth responses to drought in Mediterranean forests. European Journal of Forest<br>Research, 2012, 131, 1797-1807.                                                   | 1.1 | 37        |
| 74 | Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology, 2018, 38, 4211-4224.                                                 | 1.5 | 34        |
| 75 | Fire and torrential rainfall: effects on the perennial grass Brachypodium retusum. Plant Ecology, 2004, 173, 225-232.                                                                 | 0.7 | 33        |
| 76 | Do variations in leaf phenology affect radial growth variations in Fagus sylvatica?. International<br>Journal of Biometeorology, 2015, 59, 1127-1132.                                 | 1.3 | 33        |
| 77 | Precipitation is not limiting for xylem formation dynamics and vessel development in European beech from two temperate forest sites. Tree Physiology, 2018, 38, 186-197.              | 1.4 | 33        |
| 78 | Linking tree-ring growth and satellite-derived gross primary growth in multiple forest biomes.<br>Temporal-scale matters. Ecological Indicators, 2020, 108, 105753.                   | 2.6 | 33        |
| 79 | Fire and torrential rainfall: effects on seedling establishment in Mediterranean gorse shrublands.<br>International Journal of Wildland Fire, 2005, 14, 413.                          | 1.0 | 30        |
| 80 | Summer drought reconstruction in northeastern Spain inferred from a tree ring latewood network since 1734. Geophysical Research Letters, 2017, 44, 8492-8500.                         | 1.5 | 29        |
| 81 | Challenges for growth of beech and co-occurring conifers in a changing climate context.<br>Dendrochronologia, 2018, 52, 1-10.                                                         | 1.0 | 29        |
| 82 | Factors controlling seedling germination after fire in Mediterranean gorse shrublands. Implications<br>for fire prescription. Journal of Environmental Management, 2005, 76, 159-166. | 3.8 | 27        |
| 83 | Anatomical characteristics and hydrologic signals in tree-rings of oaks (Quercus robur L.). Trees -<br>Structure and Function, 2013, 27, 1669-1680.                                   | 0.9 | 27        |
| 84 | Missing Rings in Pinus halepensis – The Missing Link to Relate the Tree-Ring Record to Extreme Climatic<br>Events. Frontiers in Plant Science, 2016, 7, 727.                          | 1.7 | 27        |
| 85 | MISSING AND DARK RINGS ASSOCIATED WITH DROUGHT IN PINUS HALEPENSIS. IAWA Journal, 2016, 37, 260-274.                                                                                  | 2.7 | 27        |
| 86 | Assessing components of a competition index to predict growth in an even-aged Pinus nigra stand.<br>New Forests, 1998, 15, 223-242.                                                   | 0.7 | 26        |
| 87 | Temperature variability in the Iberian Range since 1602 inferred from tree-ring records. Climate of the Past, 2017, 13, 93-105.                                                       | 1.3 | 24        |
| 88 | Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus<br>halepensis forests. Science of the Total Environment, 2017, 574, 982-990.  | 3.9 | 23        |
| 89 | Spatially based reconstruction of daily precipitation instrumental data series. Climate Research, 2017,<br>73, 167-186.                                                               | 0.4 | 23        |
| 90 | LACK OF ANNUAL PERIODICITY IN CAMBIAL PRODUCTION OF PHLOEM IN TREES FROM MEDITERRANEAN AREAS. IAWA Journal, 2016, 37, 349-364.                                                        | 2.7 | 21        |

| #   | Article                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Contrasting Patterns of Tree Growth of Mediterranean Pine Species in the Iberian Peninsula. Forests, 2018, 9, 416.                                                                                    | 0.9 | 21        |
| 92  | A global perspective on the climateâ€driven growth synchrony of neighbouring trees. Global Ecology and Biogeography, 2020, 29, 1114-1125.                                                             | 2.7 | 19        |
| 93  | Rogation ceremonies: a key to understanding past drought variability in northeastern Spain since 1650.<br>Climate of the Past, 2019, 15, 1647-1664.                                                   | 1.3 | 15        |
| 94  | Transition Dates from Earlywood to Latewood and Early Phloem to Late Phloem in Norway Spruce.<br>Forests, 2021, 12, 331.                                                                              | 0.9 | 15        |
| 95  | Spatial variability of precipitation in Spain. Regional Environmental Change, 2014, 14, 1743-1749.                                                                                                    | 1.4 | 14        |
| 96  | Tree growth response to drought partially explains regionalâ€scale growth and mortality patterns in<br>Iberian forests. Ecological Applications, 2022, 32, e2589.                                     | 1.8 | 13        |
| 97  | SLOCLIM: a high-resolution daily gridded precipitation and temperature dataset for Slovenia. Earth System Science Data, 2021, 13, 3577-3592.                                                          | 3.7 | 12        |
| 98  | Hydrological response of Mediterranean gorse shrubland under extreme rainfall simulation event.<br>Zeitschrift Für Geomorphologie, 2004, 48, 293-304.                                                 | 0.3 | 12        |
| 99  | Spatial patterns of climate–growth relationships across species distribution as a forest management<br>tool in Moncayo Natural Park (Spain). European Journal of Forest Research, 2019, 138, 299-312. | 1.1 | 10        |
| 100 | Modeling tree-growth: Assessing climate suitability of temperate forests growing in Moncayo Natural<br>Park (Spain). Forest Ecology and Management, 2019, 435, 128-137.                               | 1.4 | 9         |
| 101 | Influence of Soil Moisture vs. Climatic Factors in Pinus Halepensis Growth Variability in Spain: A Study with Remote Sensing and Modeled Data. Remote Sensing, 2021, 13, 757.                         | 1.8 | 9         |
| 102 | High-Resolution Temperature Variability Reconstructed from Black Pine Tree Ring Densities in Southern Spain. Atmosphere, 2020, 11, 748.                                                               | 1.0 | 8         |
| 103 | A resprouter herb reduces negative density-dependent effects among neighboring seeders after fire.<br>Acta Oecologica, 2012, 38, 17-23.                                                               | 0.5 | 7         |
| 104 | Tree-Ring Chronology of Pedunculate Oak (Quercus robur) and its Potential for Development of<br>Dendrochronological Research in Croatia. Drvna Industrija, 2014, 65, 129-137.                         | 0.3 | 7         |
| 105 | Intra-seasonal trends in phloem traits in Pinus spp. from drought-prone environments. IAWA Journal,<br>2020, 41, 219-235.                                                                             | 2.7 | 7         |
| 106 | Hydroclimatic variability in Santiago (Chile) since the 16th century. International Journal of<br>Climatology, 2021, 41, E2015.                                                                       | 1.5 | 7         |
| 107 | When Density Matters: The Spatial Balance between Early and Latewood. Forests, 2021, 12, 818.                                                                                                         | 0.9 | 6         |
| 108 | Estudio espacial y temporal de las tendencias de la lluvia en la Comunidad Valenciana (1961-1990).<br>Cuadernos De Investigacion Geografica, 0, 24, 7-24.                                             | 0.6 | 6         |

| #   | Article                                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Predicting germination of Medicago sativa and Onobrychis viciifolia seeds by using image analysis.<br>Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 615-623.                                                                                                               | 0.8 | 5         |
| 110 | Rain in the desert; A precipitation reconstruction of the last 156 years inferred from Aleppo Pine in the<br>Bardenas Natural Park, Spain. Dendrochronologia, 2020, 64, 125759.                                                                                                                                      | 1.0 | 2         |
| 111 | Modelling dendro-anthracological parameters with dendrochronological reference datasets:<br>Interrogating the applicability of anthraco-typology to assess Aleppo pine (Pinus halepensis Miller)<br>wood management from archaeological charcoal fragments. Journal of Archaeological Science, 2020,<br>124. 105265. | 1.2 | 2         |
| 112 | Reply to Elmendorf and Ettinger: Photoperiod plays a dominant and irreplaceable role in triggering secondary growth resumption. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32865-32867.                                                                             | 3.3 | 2         |
| 113 | Seedling emergence of tall fescue and wheatgrass under different climate conditions in Iran. Spanish<br>Journal of Agricultural Research, 2012, 10, 183.                                                                                                                                                             | 0.3 | 2         |
| 114 | Aproximación metodológica al análisis de la estructura de las tendencias de lluvia. Geographicalia,<br>2016, , 53.                                                                                                                                                                                                   | 0.1 | 0         |
| 115 | Climate and population: risk exposure to precipitation concentration in mainland Spain (1950-2010).<br>Boletin De La Asociacion De Geografos Espanoles, 2020, , .                                                                                                                                                    | 0.2 | 0         |