
## Takeshi Omori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6025131/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interpretation of Young's equation for a liquid droplet on a flat and smooth solid surface:<br>Mechanical and thermodynamic routes with a simple Lennard-Jones liquid. Journal of Chemical<br>Physics, 2019, 150, 044701.                               | 3.0  | 35        |
| 2  | Shear force measurement of the hydrodynamic wall position in molecular dynamics. Journal of Chemical Physics, 2019, 151, 041103.                                                                                                                        | 3.0  | 24        |
| 3  | Green-Kubo measurement of liquid-solid friction in finite-size systems. Journal of Chemical Physics, 2019, 151, .                                                                                                                                       | 3.0  | 21        |
| 4  | Apparent and microscopic dynamic contact angles in confined flows. Physics of Fluids, 2017, 29, 112107.                                                                                                                                                 | 4.0  | 18        |
| 5  | Wilhelmy equation revisited: A lightweight method to measure liquid–vapor, solid–liquid, and<br>solid–vapor interfacial tensions from a single molecular dynamics simulation. Journal of Chemical<br>Physics, 2020, 153, 034701.                        | 3.0  | 16        |
| 6  | Extraction of the equilibrium pinning force on a contact line exerted from a wettability boundary of<br>a solid surface through the connection between mechanical and thermodynamic routes. Journal of<br>Chemical Physics, 2019, 151, 154501.          | 3.0  | 15        |
| 7  | Molecular dynamics analysis of the velocity slip of a water and methanol liquid mixture. Physical<br>Review E, 2015, 92, 022402.                                                                                                                        | 2.1  | 11        |
| 8  | Molecular dynamics analysis of the friction between a water-methanol liquid mixture and a non-polar solid crystal surface. Journal of Chemical Physics, 2017, 146, 174702.                                                                              | 3.0  | 10        |
| 9  | Slip length measurement in rectangular graphene nanochannels with a 3D flow analysis. Carbon, 2022, 189, 162-172.                                                                                                                                       | 10.3 | 10        |
| 10 | Large effect of lateral box size in molecular dynamics simulations of liquid-solid friction. Physical<br>Review E, 2019, 100, 023101.                                                                                                                   | 2.1  | 9         |
| 11 | Full characterization of the hydrodynamic boundary condition at the atomic scale using an<br>oscillating channel: Identification of the viscoelastic interfacial friction and the hydrodynamic<br>boundary position. Physical Review Fluids, 2019, 4, . | 2.5  | 9         |
| 12 | Extraction of the solid-liquid friction coefficient between a water-methanol liquid mixture and a<br>non-polar solid crystal surface by Green-Kubo equations. Mechanical Engineering Letters, 2017, 3,<br>17-00422-17-00422.                            | 0.6  | 8         |
| 13 | Understanding the asymmetry between advancing and receding microscopic contact angles. Soft Matter, 2019, 15, 3923-3928.                                                                                                                                | 2.7  | 7         |
| 14 | Local stress tensor calculation by the method-of-plane in microscopic systems with macroscopic<br>flow: A formulation based on the velocity distribution function. Journal of Chemical Physics, 2021,<br>155, 184103.                                   | 3.0  | 5         |
| 15 | Study on the Navier boundary condition for flows with a moving contact line by means of molecular dynamics simulation. Transactions of the JSME (in Japanese), 2015, 81, 15-00409-15-00409.                                                             | 0.2  | 3         |
| 16 | Theoretical framework for the atomistic modeling of frequency-dependent liquid-solid friction.<br>Physical Review Research, 2021, 3, .                                                                                                                  | 3.6  | 2         |
| 17 | Numerical study on the aerodynamics of an airfoil moving close to an air-water interface.<br>Transactions of the JSME (in Japanese), 2016, 82, 16-00112-16-00112.                                                                                       | 0.2  | 1         |
| 18 | Coupled Simulation of Flow and Chemical Reaction with Finite Reaction Rate for Decarburization of<br>Molten Iron using Gas Jet of Carbon Dioxide. ISIJ International, 2022, 62, 38-47.                                                                  | 1.4  | 1         |

| #  | Article                                                                                                                                                                                                 | IF                | CITATIONS        |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|
| 19 | Development of numerical method for two-phase flow on polyhedral meshes (Part 1, Development of) Tj ETQq1 1<br>15-00256-15-00256.                                                                       | l 0.784314<br>0.2 | rgBT /Overl<br>0 |
| 20 | Development of numerical method for mass transfer from a buoyant bubble under a high Schmidt number condition. Transactions of the JSME (in Japanese), 2016, 82, 16-00079-16-00079.                     | 0.2               | 0                |
| 21 | Quantifying the solid–fluid interfacial tensions depending on the substrate curvature: Young's<br>equation holds for wetting around nanoscale cylinder. Journal of Chemical Physics, 2022, 156, 054701. | 3.0               | 0                |