Eldon Emberly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/60251/publications.pdf

Version: 2024-02-01

567144 454834 1,798 33 15 30 citations h-index g-index papers 33 33 33 3694 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Factors underlying variable DNA methylation in a human community cohort. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17253-17260.	3.3	414
2	Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics and Chromatin, 2013, 6, 4.	1.8	412
3	Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics and Chromatin, 2015, 8, 19.	1.8	132
4	Chromatin Immunoprecipitation Indirect Peaks Highlight Long-Range Interactions of Insulator Proteins and Pol II Pausing. Molecular Cell, 2014, 53, 672-681.	4.5	102
5	Splitting the task: Ubp8 and Ubp10 deubiquitinate different cellular pools of H2BK123. Genes and Development, 2011, 25, 2242-2247.	2.7	96
6	Genome-Wide Mapping of Boundary Element-Associated Factor (BEAF) Binding Sites in <i>Drosophila melanogaster</i> Links BEAF to Transcription. Molecular and Cellular Biology, 2009, 29, 3556-3568.	1.1	95
7	Conservation of regulatory elements between two species of Drosophila. BMC Bioinformatics, 2003, 4, 57.	1.2	84
8	BEAF Regulates Cell-Cycle Genes through the Controlled Deposition of H3K9 Methylation Marks into Its Conserved Dual-Core Binding Sites. PLoS Biology, 2008, 6, e327.	2.6	60
9	Hourglass Model for a Protein-Based Circadian Oscillator. Physical Review Letters, 2006, 96, 038303.	2.9	59
10	State Orthogonalization by Building a Hilbert Space: A New Approach to Electronic Quantum Transport in Molecular Wires. Physical Review Letters, 1998, 81, 5205-5208.	2.9	57
11	Electrical conductance of molecular wires. Nanotechnology, 1999, 10, 285-289.	1.3	37
12	Insulators recruit histone methyltransferase d <scp>M</scp> es4 to regulate chromatin of flanking genes. EMBO Journal, 2014, 33, 1599-1613.	3.5	34
13	Chromosome Driven Spatial Patterning of Proteins in Bacteria. PLoS Computational Biology, 2010, 6, e1000986.	1.5	32
14	Substrate stiffness tunes the dynamics of polyvalent rolling motors. Soft Matter, 2021, 17, 1468-1479.	1.2	20
15	Principles for the design and operation of a molecular wire transistor. Journal of Applied Physics, 2000, 88, 5280-5282.	1.1	18
16	Functional mapping of androgen receptor enhancer activity. Genome Biology, 2021, 22, 149.	3.8	18
17	Operational Principles for the Dynamics of the In Vitro ParA-ParB System. PLoS Computational Biology, 2015, 11, e1004651.	1.5	18
18	CHROMATRA: a Galaxy tool for visualizing genome-wide chromatin signatures. Bioinformatics, 2012, 28, 717-718.	1.8	14

#	Article	IF	Citations
19	Optimizing the readout of morphogen gradients. Physical Review E, 2008, 77, 041903.	0.8	13
20	Dense neural networks for predicting chromatin conformation. BMC Bioinformatics, 2018, 19, 372.	1.2	13
21	Vital Dye Reaction and Granule Localization in Periplasm of Escherichia coli. PLoS ONE, 2012, 7, e38427.	1.1	10
22	DNA segregation under Par protein control. PLoS ONE, 2019, 14, e0218520.	1.1	9
23	A maximum-entropy model for predicting chromatin contacts. PLoS Computational Biology, 2018, 14, e1005956.	1.5	9
24	Localization of aggregating proteins in bacteria depends on the rate of addition. Frontiers in Microbiology, 2014, 5, 418.	1.5	8
25	Reply to Suderman et al.: Importance of accounting for blood cell composition in epigenetic studies. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1247.	3.3	7
26	Non-Equilibrium Polar Localization of Proteins in Bacterial Cells. PLoS ONE, 2013, 8, e64075.	1.1	7
27	Bacterial motion in narrow capillaries. FEMS Microbiology Ecology, 2015, 91, 1-7.	1.3	7
28	Children's biobehavioral reactivity to challenge predicts DNA methylation in adolescence and emerging adulthood. Developmental Science, 2019, 22, e12739.	1.3	6
29	Abrupt, Asynchronous Changes in Action Representations by Anterior Cingulate Cortex Neurons during Trial and Error Learning. Cerebral Cortex, 2020, 30, 4336-4345.	1.6	4
30	Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data. BMC Bioinformatics, 2015, 16, 171.	1.2	3
31	A Model for Cell Population Size Control Using Asymmetric Division. PLoS ONE, 2013, 8, e74324.	1.1	0
32	Confinement-dependent localization of diffusing aggregates in cellular geometries. Physical Review E, 2015, 91, 012705.	0.8	0
33	Optimizing Efficiency and Motility of a Polyvalent Molecular Motor. Micromachines, 2022, 13, 914.	1.4	0