Hai-Zhen Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6025021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile synthesis of a Ni3S2@C composite using cation exchange resin as an efficient catalyst to improve the kinetic properties of MgH2. Journal of Magnesium and Alloys, 2022, 10, 3628-3640.	11.9	25
2	Two-dimensional vanadium carbide for simultaneously tailoring the hydrogen sorption thermodynamics and kinetics of magnesium hydride. Journal of Magnesium and Alloys, 2022, 10, 1051-1065.	11.9	55
3	Roles of in situ-formed NbN and Nb2O5 from N-doped Nb2C MXene in regulating the re/hydrogenation and cycling performance of magnesium hydride. Chemical Engineering Journal, 2022, 431, 133985.	12.7	47
4	Recent advances in metastable alloys for hydrogen storage: a review. Rare Metals, 2022, 41, 1797-1817.	7.1	93
5	Effects of transition metal Ti and its compounds on hydrogen adsorption performance of Mg17Al12. International Journal of Hydrogen Energy, 2022, 47, 13900-13910.	7.1	1
6	Multi-Role Surface Modification of Single-Crystalline Nickel-Rich Lithium Nickel Cobalt Manganese Oxides Cathodes with WO3 to Improve Performance for Lithium-Ion Batteries. Nanomaterials, 2022, 12, 1324.	4.1	8
7	In situ incorporation of highly dispersed nickel and vanadium trioxide nanoparticles in nanoporous carbon for the hydrogen storage performance enhancement of magnesium hydride. Chemical Engineering Journal, 2022, 446, 137261.	12.7	42
8	Development of a gaseous and solid-state hybrid system for stationary hydrogen energy storage. Green Energy and Environment, 2021, 6, 528-537.	8.7	35
9	Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. Journal of Energy Chemistry, 2021, 52, 428-440.	12.9	57
10	Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials. Rare Metals, 2021, 40, 1003-1007.	7.1	50
11	Cerium hydride generated during ball milling and enhanced by graphene for tailoring hydrogen sorption properties of sodium alanate. International Journal of Hydrogen Energy, 2021, 46, 4168-4180.	7.1	8
12	Combinations of V ₂ C and Ti ₃ C ₂ MXenes for Boosting the Hydrogen Storage Performances of MgH ₂ . ACS Applied Materials & Interfaces, 2021, 13, 13235-13247.	8.0	111
13	Facile and low-cost synthesis of carbon-supported manganese monoxide nanocomposites and evaluation of their superior catalytic effect toward magnesium hydride. Journal of Alloys and Compounds, 2021, 887, 161380.	5.5	16
14	Co-Addition of Mg2Si and Graphene for Synergistically Improving the Hydrogen Storage Properties of Mgâ^'Li Alloy. Frontiers in Chemistry, 2021, 9, 775537.	3.6	0
15	Enhanced hydrogen desorption/absorption properties of magnesium hydride with CeF3@Gn. International Journal of Hydrogen Energy, 2020, 45, 4754-4764.	7.1	26
16	Effects of vanadium, vanadium carbide, and vanadium oxide catalysts on hydrogenation of Mg17Al12 (110) surface: A first principles study. International Journal of Hydrogen Energy, 2020, 45, 28078-28086.	7.1	5
17	CNTs decorated with CoFeB as a dopant to remarkably improve the dehydrogenation/rehydrogenation performance and cyclic stability of MgH2. International Journal of Hydrogen Energy, 2020, 45, 28964-28973.	7.1	26
18	Enhanced Hydrogen Storage Properties of MgH2 Using a Ni and TiO2 Co-Doped Reduced Graphene Oxide Nanocomposite as a Catalyst. Frontiers in Chemistry, 2020, 8, 207.	3.6	15

Hai-Zhen Liu

#	Article	IF	CITATIONS
19	MoSe2 hollow nanospheres decorated with FeNi3 nanoparticles for enhancing the hydrogen storage properties of MgH2. Journal of Alloys and Compounds, 2020, 830, 154631.	5.5	21
20	Synergistic catalytic effects of ZIF-67 and transition metals (Ni, Cu, Pd, and Nb) on hydrogen storage properties of magnesium. International Journal of Hydrogen Energy, 2020, 45, 13376-13386.	7.1	16
21	Improved hydrogen storage properties of LiBH4 confined with activated charcoal by ball milling. Rare Metals, 2019, 38, 321-326.	7.1	21
22	Effects of nano-composites (FeB, FeB/CNTs) on hydrogen storage properties of MgH2. Journal of Power Sources, 2019, 438, 227006.	7.8	57
23	Catalytic enhanced hydrogen storage properties of Mg-based alloy by the addition of reduced graphene oxide supported V2O3 nanocomposite. Journal of Alloys and Compounds, 2019, 802, 660-667.	5.5	39
24	Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. International Journal of Hydrogen Energy, 2019, 44, 28863-28873.	7.1	62
25	The Dehydrogenation Mechanism and Cycling Property of MgH 2 ÂModified by CoB/CNTs Addition. ChemistrySelect, 2019, 4, 9934-9939.	1.5	4
26	Synthetical catalysis of nickel and graphene on enhanced hydrogen storage properties of magnesium. International Journal of Hydrogen Energy, 2019, 44, 24849-24855.	7.1	29
27	Enhanced electrochemical and hydrogen storage properties of La–Mg–Ni-based alloy electrode using a Ni and N co-doped reduced graphene oxide nanocomposite as a catalyst. International Journal of Hydrogen Energy, 2019, 44, 25840-25849.	7.1	12
28	Wet Chemical Synthesis of Non-solvated Rod-Like α'-AlH3 as a Hydrogen Storage Material. Frontiers in Chemistry, 2019, 7, 892.	3.6	11
29	Hydrogen storage properties of nano-CoB/CNTs catalyzed MgH2. Journal of Alloys and Compounds, 2018, 735, 635-642.	5.5	45
30	Enhanced dehydrogenation kinetic properties and hydrogen storage reversibility of LiBH4 confined in activated charcoal. Transactions of Nonferrous Metals Society of China, 2018, 28, 1618-1625.	4.2	11
31	Hydrogen desorption kinetics of the destabilized LiBH 4 AlH 3 composites. International Journal of Hydrogen Energy, 2017, 42, 22358-22365.	7.1	17
32	Hydrogen desorption behaviors of γ-AlH 3 : Diverse decomposition mechanisms for the outer layer and the inner part of γ-AlH 3 particle. International Journal of Hydrogen Energy, 2017, 42, 25310-25315.	7.1	18
33	Hydrogen storage properties of activated carbon confined LiBH4 doped with CeF3 as catalyst. International Journal of Hydrogen Energy, 2017, 42, 23010-23017.	7.1	19
34	Enhanced hydrogen storage properties of 2LiBH4-LiAlH4 nanoconfined in resorcinol formaldehyde carbon aerogel. Journal of Alloys and Compounds, 2017, 726, 525-531.	5.5	15
35	Hydrogen storage properties of Nb-compounds-catalyzed LiBH4–MgH2. Rare Metals, 2017, 36, 723-728.	7.1	16
36	Improved hydrogen desorption properties of LiBH4 by AlH3 addition. International Journal of Hydrogen Energy, 2016, 41, 22118-22127.	7.1	48

Hai-Zhen Liu

#	Article	IF	CITATIONS
37	Synergistically thermodynamic and kinetic tailoring of the hydrogen desorption properties of MgH ₂ by co-addition of AlH ₃ and CeF ₃ . RSC Advances, 2015, 5, 22091-22096.	3.6	41
38	Study on hydrogen generation from the hydrolysis of a ball milled aluminum/calcium hydride composite. RSC Advances, 2015, 5, 60460-60466.	3.6	20
39	Investigation on the improved hydrolysis of aluminum–calcium hydride-salt mixture elaborated by ball milling. Energy, 2015, 84, 714-721.	8.8	44
40	Effect of salts addition on the hydrogen generation of Al–LiH composite elaborated by ball milling. Energy, 2015, 89, 907-913.	8.8	35
41	Exploration of hydrogen generation from an Mg–LiBH4 system improved by NiCl2 addition. Journal of Power Sources, 2014, 251, 459-465.	7.8	24
42	Hydrogen generation from Mg–LiBH4 hydrolysis improved by AlCl3 addition. Energy, 2014, 68, 548-554.	8.8	43
43	Hydrogen Desorption Properties of the MgH ₂ –AlH ₃ Composites. Journal of Physical Chemistry C, 2014, 118, 37-45.	3.1	74
44	Improved hydrogen generation from the hydrolysis of aluminum ball milled with hydride. Energy, 2014, 72, 421-426.	8.8	48
45	Microstructures and Hydrogen Desorption Properties of the MgH ₂ –AlH ₃ Composite with NbF ₅ Addition. Journal of Physical Chemistry C, 2014, 118, 18908-18916.	3.1	30
46	Dehydriding properties of Î ³ -AlH3. International Journal of Hydrogen Energy, 2013, 38, 10851-10856.	7.1	28
47	Hydrogen generation from the hydrolysis of Mg powder ball-milled with AlCl3. Energy, 2013, 53, 147-152.	8.8	90
48	Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms. Journal of Materials Chemistry A, 2013, 1, 12527.	10.3	70
49	A 70ÂMPa hydrogen-compression system using metal hydrides. International Journal of Hydrogen Energy, 2011, 36, 9079-9085.	7.1	47
50	Function-Based Architecture Design for Next-Generation Automotive Brake Controls. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 9, 135-142.	0.4	4