
Anna Lysakowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Model of Ephaptic Coupling and Potassium Modulation at the Vestibular Hair Cell Calyx Synapse. Biophysical Journal, 2021, 120, 353a.	0.5	0
2	Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. Journal of Neuroscience, 2020, 40, 8556-8572.	3.6	21
3	Functional, Morphological, and Evolutionary Characterization of Hearing in Subterranean, Eusocial African Mole-Rats. Current Biology, 2020, 30, 4329-4341.e4.	3.9	19
4	Biophysical Model of the Vestibular Hair Cell CALYX Synapse. Biophysical Journal, 2020, 118, 28a.	0.5	0
5	Cellular Anatomy of the Sensory Receptor. , 2020, , 12-15.		0
6	Anatomy and Microstructural Organization of Vestibular Hair Cells. , 2020, , 173-184.		0
7	Why study inner ear hair cell mitochondria?. Hno, 2019, 67, 429-433.	1.0	11
8	Detection of axonal degeneration in a mouse model of Huntington's disease: comparison between diffusion tensor imaging and anomalous diffusion metrics. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 461-471.	2.0	28
9	Muscarinic Acetylcholine Receptors and M-Currents Underlie Efferent-Mediated Slow Excitation in Calyx-Bearing Vestibular Afferents. Journal of Neuroscience, 2017, 37, 1873-1887.	3.6	52
10	Nicotinic acetylcholine receptors regulate vestibular afferent gain and activation timing. Journal of Comparative Neurology, 2017, 525, 1216-1233.	1.6	21
11	Sodium channel diversity in the vestibular ganglion: Na _V 1.5, Na _V 1.8, and tetrodotoxin-sensitive currents. Journal of Neurophysiology, 2016, 115, 2536-2555.	1.8	19
12	A novel missense variant in <i>PRKCB</i> segregates low-frequency hearing loss in an autosomal dominant family with Meniere's disease. Human Molecular Genetics, 2016, 25, 3407-3415.	2.9	59
13	Identification of two novel mutations in FAM136A and DTNA genes in autosomal-dominant familial Meniere's disease. Human Molecular Genetics, 2015, 24, 1119-1126.	2.9	95
14	Pharmacologically Distinct Nicotinic Acetylcholine Receptors Drive Efferent-Mediated Excitation in Calyx-Bearing Vestibular Afferents. Journal of Neuroscience, 2015, 35, 3625-3643.	3.6	50
15	Toward the Development of an Accurate 3D Human Body Model Implemented in a Realâ€Time, Interactive Application to Enhance Anatomy Teaching. FASEB Journal, 2015, 29, 692.13.	0.5	1
16	Erratum to "Chemical Separation of Fixed Tissue Using Thermolysin― Journal of Histology, 2014, 2014, 1-1.	0.2	1
17	Striated organelle, a cytoskeletal structure positioned to modulate hair-cell transduction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4473-4478.	7.1	38
18	Altered Phenotype of the Vestibular Organ in GLAST-1 Null Mice. JARO - Journal of the Association for Research in Otolaryngology, 2012, 13, 323-333.	1.8	7

ANNA LYSAKOWSKI

#	Article	IF	CITATIONS
19	Glutamate Transporters EAAT4 and EAAT5 Are Expressed in Vestibular Hair Cells and Calyx Endings. PLoS ONE, 2012, 7, e46261.	2.5	42
20	Alpha Ilâ€Spectrin Interacting Partners in the Inner Ear Serve as Pointers to the Protein Composition of the Striated Organelle. FASEB Journal, 2012, 26, 522.6.	0.5	0
21	Molecular Microdomains in a Sensory Terminal, the Vestibular Calyx Ending. Journal of Neuroscience, 2011, 31, 10101-10114.	3.6	138
22	The Efferent Vestibular System. Springer Handbook of Auditory Research, 2011, , 135-186.	0.7	30
23	αâ€Iâ€spectrin as a marker for the striated organelle in inner ear hair cells. FASEB Journal, 2011, 25, 876.7.	0.5	0
24	Anatomy of the Vestibular System. , 2010, , 1850-1865.		2
25	Research Career Development Awards: Which one is right for me?. FASEB Journal, 2010, 24, 7.4.	0.5	Ο
26	The Striated Organelle: A Molecular Motor In Vestibular Type I Hair Cells. Biophysical Journal, 2009, 96, 128a.	0.5	0
27	Labeling of inner ear afferents in the transgenic thy1 ‥FPâ€H mouse. FASEB Journal, 2009, 23, 835.6.	0.5	0
28	A reâ€examination of the striated organelle in vestibular endorgans. FASEB Journal, 2009, 23, 835.5.	0.5	0
29	Ultrastructural analysis of the cristae ampullares in the squirrel monkey (<i>Saimiri sciureus</i>). Journal of Comparative Neurology, 2008, 511, 47-64.	1.6	68
30	A Study of the Striated Organelle in Vestibular Endorgans. FASEB Journal, 2008, 22, 29-29.	0.5	0
31	Quantal and Nonquantal Transmission in Calyx-Bearing Fibers of the Turtle Posterior Crista. Journal of Neurophysiology, 2007, 98, 1083-1101.	1.8	70
32	Developmental Changes in Two Voltage-Dependent Sodium Currents in Utricular Hair Cells. Journal of Neurophysiology, 2007, 97, 1684-1704.	1.8	63
33	Comparative genomic study of the α9 nicotinic acetylcholine receptor. FASEB Journal, 2007, 21, A1341.	0.5	0
34	Mammalian Vestibular Hair Cells. , 2006, , 348-442.		31
35	Hair cell ribbon synapses. Cell and Tissue Research, 2006, 326, 347-359.	2.9	141
36	Mechanisms of Efferent-Mediated Responses in the Turtle Posterior Crista. Journal of Neuroscience, 2006, 26, 13180-13193.	3.6	56

#	Article	IF	CITATIONS
37	Regulation of large dense-core vesicle volume and neurotransmitter content mediated by adaptor protein 3. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10035-10040.	7.1	58
38	M-Like K+ Currents in Type I Hair Cells and Calyx Afferent Endings of the Developing Rat Utricle. Journal of Neuroscience, 2006, 26, 10253-10269.	3.6	108
39	Comparative genomic study of the $\hat{I}\pm9$ nicotinic acetylcholine receptor. FASEB Journal, 2006, 20, LB22.	0.5	0
40	Comparative Morphology of Rodent Vestibular Periphery. II. Cristae Ampullares. Journal of Neurophysiology, 2005, 93, 267-280.	1.8	100
41	Alpha-9 nicotinic acetylcholine receptor immunoreactivity in the rodent vestibular labyrinth. Journal of Comparative Neurology, 2005, 492, 323-333.	1.6	29
42	Mouse Chromaffin Cells Have Two Populations of Dense Core Vesicles. Journal of Neurophysiology, 2005, 94, 2093-2104.	1.8	83
43	Comparative Morphology of Rodent Vestibular Periphery. I. Saccular and Utricular Maculae. Journal of Neurophysiology, 2005, 93, 251-266.	1.8	187
44	Morphophysiology of the Vestibular Periphery. , 2004, , 57-152.		54
45	Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. Journal of Comparative Neurology, 2000, 427, 508-521.	1.6	46
46	Central Versus Peripheral Origin of Vestibuloocular Reflex Recovery Following Semicircular Canal Plugging in Rhesus Monkeys. Journal of Neurophysiology, 2000, 84, 3078-3082.	1.8	29
47	Essential role of <i>BETA2/NeuroD1</i> in development of the vestibular and auditory systems. Genes and Development, 2000, 14, 2839-2854.	5.9	609
48	Hair cell recovery in mitotically blocked cultures of the bullfrog saccule. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11722-11729.	7.1	81
49	Horizontal Vestibuloocular Reflex Evoked by High-Acceleration Rotations in the Squirrel Monkey. II. Responses After Canal Plugging. Journal of Neurophysiology, 1999, 82, 1271-1285.	1.8	77
50	Development of Synaptic Innervation in the Rodent Utricle. Annals of the New York Academy of Sciences, 1999, 871, 422-425.	3.8	22
51	Dense-cored vesicles, smooth endoplasmic reticulum, and mitochondria are closely associated with non-specialized parts of plasma membrane of nerve terminals: Implications for exocytosis and calcium buffering by intraterminal organelles. , 1999, 403, 378-390.		37
52	Math1: An Essential Gene for the Generation of Inner Ear Hair Cells. Science, 1999, 284, 1837-1841.	12.6	1,042
53	Peripherin immunoreactivity labels small diameter vestibular â€~bouton' afferents in rodents. Hearing Research, 1999, 133, 149-154.	2.0	38
54	Hair Cells in Mammalian Utricles. Otolaryngology - Head and Neck Surgery, 1998, 119, 172-181.	1.9	58

Anna Lysakowski

#	Article	IF	CITATIONS
55	Postnatal Development of Type I and Type II Hair Cells in the Mouse Utricle: Acquisition of Voltage-Gated Conductances and Differentiated Morphology. Journal of Neuroscience, 1998, 18, 7487-7501.	3.6	215
56	A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. , 1997, 389, 419-443.		197
57	Synaptic Organization of the Crista Ampullaris in Vertebrates. Annals of the New York Academy of Sciences, 1996, 781, 164-182.	3.8	69
58	Nitric Oxide Synthase Localized in a Subpopulation of Vestibular Efferents with NADPH Diaphorase Histochemistry. Annals of the New York Academy of Sciences, 1996, 781, 658-662.	3.8	11
59	Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. Journal of Neurophysiology, 1995, 73, 1270-1281.	1.8	110
60	Structure and Function of Vestibular Nerve Fibers in the Chinchilla and Squirrel Monkey. Annals of the New York Academy of Sciences, 1992, 656, 92-107.	3.8	53
61	Morphophysiological and ultrastructural studies in the mammalian cristae ampullares. Hearing Research, 1990, 49, 89-102.	2.0	86
62	An atlas of the regional and laminar distribution of choline acetyltransferase immunoreactivity in rat cerebral cortex. Neuroscience, 1989, 28, 291-336.	2.3	227
63	Cholinergic innervation displays strikingly different laminar preferences in several cortical areas. Neuroscience Letters, 1986, 64, 102-108.	2.1	63
64	Histochemical and architectonic differentiation of zones of pretectal and collicular inputs to the pulvinar and dorsal lateral geniculate nuclei in the macaque. Journal of Comparative Neurology, 1986, 250, 431-448.	1.6	35
65	On the distribution and probable origin of axonal bundles in the pigment epithelium of the eyecup. Developmental Brain Research, 1985, 17, 293-295.	1.7	4