Ye Deng

List of Publications by Citations

Source: https://exaly.com/author-pdf/6024727/ye-deng-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58 13,249 110 222 h-index g-index citations papers 18,006 6.37 238 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
222	Molecular ecological network analyses. <i>BMC Bioinformatics</i> , 2012 , 13, 113	3.6	975
221	Deep-sea oil plume enriches indigenous oil-degrading bacteria. <i>Science</i> , 2010 , 330, 204-8	33.3	906
220	Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. <i>MBio</i> , 2011 , 2,	7.8	497
219	Functional molecular ecological networks. <i>MBio</i> , 2010 , 1,	7.8	431
218	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. <i>ISME Journal</i> , 2016 , 10, 1669-81	11.9	365
217	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E836-45	11.5	363
216	Microbial mediation of carbon-cycle feedbacks to climate warming. <i>Nature Climate Change</i> , 2012 , 2, 106	5-211.04	348
215	Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal, 2011, 5, 1303-	13 1.9	294
214	Temperature mediates continental-scale diversity of microbes in forest soils. <i>Nature Communications</i> , 2016 , 7, 12083	17.4	271
213	High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. <i>MBio</i> , 2015 , 6,	7.8	265
212	Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. <i>ISME Journal</i> , 2010 , 4, 660-72	11.9	249
211	GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. <i>ISME Journal</i> , 2010 , 4, 1167-79	11.9	249
210	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195	26.6	248
209	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. <i>ISME Journal</i> , 2012 , 6, 451-60	11.9	212
208	Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> , 2010 , 13, 564-75	10	211
207	Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. <i>Environmental Microbiology</i> , 2016 , 18, 205-18	5.2	194
206	Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community. <i>MBio</i> , 2013 , 4,	7.8	192

(2014-2014)

205	The microbial gene diversity along an elevation gradient of the Tibetan grassland. <i>ISME Journal</i> , 2014 , 8, 430-40	11.9	166
204	Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. <i>Nature Climate Change</i> , 2016 , 6, 595-600	21.4	164
203	Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. <i>ISME Journal</i> , 2011 , 5, 403-13	11.9	161
202	Biodiversity and species competition regulate the resilience of microbial biofilm community. <i>Molecular Ecology</i> , 2017 , 26, 6170-6182	5.7	156
201	A general framework for quantitatively assessing ecological stochasticity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 16892-16898	11.5	142
200	GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. <i>Molecular Ecology Resources</i> , 2014 , 14, 914-28	8.4	134
199	Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. <i>Soil Biology and Biochemistry</i> , 2013 , 65, 33-38	7.5	127
198	Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. <i>BMC Microbiology</i> , 2015 , 15, 125	4.5	125
197	Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. <i>Soil Biology and Biochemistry</i> , 2017 , 110, 12-21	7.5	124
196	GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4840-5	11.5	124
195	Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. <i>Soil Biology and Biochemistry</i> , 2017 , 104, 208-217	7.5	119
194	Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. <i>ISME Journal</i> , 2014 , 8, 1879-91	11.9	114
193	Habitat-specific patterns and drivers of bacterial Ediversity in ChinaS drylands. <i>ISME Journal</i> , 2017 , 11, 1345-1358	11.9	111
192	Impacts of the Three Gorges Dam on microbial structure and potential function. <i>Scientific Reports</i> , 2015 , 5, 8605	4.9	106
191	The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. <i>ISME Journal</i> , 2012 , 6, 259-72	11.9	95
190	Soil microbial community responses to a decade of warming as revealed by comparative metagenomics. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 1777-86	4.8	94
189	Meteorological factors had more impact on airborne bacterial communities than air pollutants. <i>Science of the Total Environment</i> , 2017 , 601-602, 703-712	10.2	92
188	Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. <i>Molecular Ecology</i> , 2014 , 23, 2988-99	5.7	91

187	Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation. <i>ISME Journal</i> , 2010 , 4, 1060-70	11.9	89
186	GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. <i>Environmental Microbiology</i> , 2009 , 11, 2611-26	5.2	87
185	Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. <i>ISME Journal</i> , 2015 , 9, 2561-72	11.9	84
184	Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. <i>Global Ecology and Biogeography</i> , 2018 , 27, 570-580	6.1	83
183	Warming enhances old organic carbon decomposition through altering functional microbial communities. <i>ISME Journal</i> , 2017 , 11, 1825-1835	11.9	80
182	Functional gene differences in soil microbial communities from conventional, low-input, and organic farmlands. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 1284-92	4.8	73
181	Impact of metal pollution and Thlaspi caerulescens growth on soil microbial communities. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7843-53	4.8	73
180	Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. <i>Molecular Ecology</i> , 2015 , 24, 5175-85	5.7	72
179	GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 991-9	4.8	71
178	Geochip-based functional gene analysis of anodophilic communities in microbial electrolysis cells under different operational modes. <i>Environmental Science & Environmental Sc</i>	10.3	70
177	Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. <i>Scientific Reports</i> , 2017 , 7, 4837	4.9	69
176	Development of a common oligonucleotide reference standard for microarray data normalization and comparison across different microbial communities. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 1088-94	4.8	69
175	Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. <i>Water Research</i> , 2019 , 148, 398-406	12.5	69
174	Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. <i>PLoS ONE</i> , 2017 , 12, e0176716	3.7	66
173	Elevated carbon dioxide alters the structure of soil microbial communities. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2991-5	4.8	66
172	Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. <i>FEMS Microbiology Ecology</i> , 2009 , 70, 324-33	4.3	65
171	Development of functional gene microarrays for microbial community analysis. <i>Current Opinion in Biotechnology</i> , 2012 , 23, 49-55	11.4	64
170	A multiplayer game: species of Clostridium, Acinetobacter, and Pseudomonas are responsible for the persistence of antibiotic resistance genes in manure-treated soils. <i>Environmental Microbiology</i> , 2016 , 18, 3494-3508	5.2	64

(2012-2019)

169	Deterministic Assembly and Diversity Gradient Altered the Biofilm Community Performances of Bioreactors. <i>Environmental Science & Environmental Scienc</i>	10.3	64	
168	Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. <i>Molecular Ecology</i> , 2017 , 26, 6608-6620	5.7	61	
167	Integrated metagenomics and network analysis of soil microbial community of the forest timberline. <i>Scientific Reports</i> , 2015 , 5, 7994	4.9	61	
166	mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. <i>Water Research</i> , 2018 , 136, 192-199	12.5	60	
165	Random sampling process leads to overestimation of Ediversity of microbial communities. <i>MBio</i> , 2013 , 4, e00324-13	7.8	58	
164	Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous Materials, 2018 , 353, 142-150	12.8	57	
163	Biogeographic patterns of soil diazotrophic communities across six forests in North America. <i>Molecular Ecology</i> , 2016 , 25, 2937-48	5.7	57	
162	Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. <i>Frontiers in Microbiology</i> , 2016 , 7, 60	5.7	57	
161	Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern ChinaS grasslands. <i>FEMS Microbiology Ecology</i> , 2015 , 91,	4.3	56	
160	Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells. <i>Applied Energy</i> , 2016 , 183, 1133-1141	10.7	52	
159	Nearly a decade-long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China). <i>Molecular Ecology</i> , 2017 , 26, 3839-3850	5.7	51	
158	Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. <i>ISME Journal</i> , 2014 , 8, 714-726	11.9	51	
157	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. <i>Soil Biology and Biochemistry</i> , 2017 , 105, 227-235	7·5	50	
156	The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. <i>Science of the Total Environment</i> , 2018 , 628-629, 969-978	10.2	50	
155	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. <i>Frontiers in Microbiology</i> , 2015 , 6, 1205	5.7	50	
154	Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. <i>Soil and Tillage Research</i> , 2019 , 195, 10435	6 ^{6.5}	49	
153	Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. <i>ICES Journal of Marine Science</i> , 2016 , 73, 865-875	2.7	48	
152	GeoChip-based analysis of microbial functional gene diversity in a landfill leachate-contaminated aquifer. Environmental Science & Environmental Scien	10.3	46	

151	Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane. <i>Environmental Science & Environmental Science & Environ</i>	10.3	46
150	Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication. <i>Chemosphere</i> , 2017 , 177, 317-325	8.4	45
149	Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. <i>Soil Biology and Biochemistry</i> , 2018 , 123, 80-86	7.5	44
148	Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. <i>Soil Biology and Biochemistry</i> , 2017 , 104, 18-29	7.5	43
147	Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. <i>Microbial Biotechnology</i> , 2015 , 8, 739-46	6.3	43
146	Dynamics of microbial community composition and function during in situ bioremediation of a uranium-contaminated aquifer. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 3860-9	4.8	42
145	NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. <i>Bioinformatics</i> , 2019 , 35, 1040-1048	7.2	42
144	Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. <i>ISME Journal</i> , 2013 , 7, 660-71	11.9	41
143	Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. <i>Scientific Reports</i> , 2017 , 7, 7741	4.9	40
142	Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. <i>Frontiers in Microbiology</i> , 2017 , 8, 945	5.7	40
141	Fungal communities respond to long-term CO2 elevation by community reassembly. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 2445-54	4.8	39
140	Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. <i>Environmental Microbiology</i> , 2010 , 12, 2645-57	5.2	39
139	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. <i>Global Change Biology</i> , 2016 , 22, 957-64	11.4	39
138	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. <i>Environmental Microbiology Reports</i> , 2016 , 8, 1048	3 <i>-3</i> 17057	38
137	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-1042	1 ^{11.5}	37
136	The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis. <i>Applied Soil Ecology</i> , 2017 , 120, 239-246	5	37
135	Latitudinal distribution of ammonia-oxidizing bacteria and archaea in the agricultural soils of eastern China. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 5593-602	4.8	36
134	Elevated COIInfluences microbial carbon and nitrogen cycling. <i>BMC Microbiology</i> , 2013 , 13, 124	4.5	36

133	Correlation of genomic and physiological traits of thermoanaerobacter species with biofuel yields. Applied and Environmental Microbiology, 2011 , 77, 7998-8008	.8	36	
132	Microbial functional gene diversity with a shift of subsurface redox conditions during In Situ uranium reduction. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2966-72	.8	36	
131	Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. <i>Water Research</i> , 2017 , 123, 268-276	2.5	35	
130	Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. <i>Scientific Reports</i> , 2015 , 5, 9316	.9	34	
129	Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil. <i>Journal of Hazardous Materials</i> , 2016 , 318, 90-98	2.8	33	
128	Over 150 years of long-term fertilization alters spatial scaling of microbial biodiversity. <i>MBio</i> , 2015 , 6,	.8	32	
127	Exploring abundance, diversity and variation of a widespread antibiotic resistance gene in wastewater treatment plants. <i>Environment International</i> , 2018 , 117, 186-195	2.9	31	
126	Bacterial communities and potential waterborne pathogens within the typical urban surface waters. <i>Scientific Reports</i> , 2018 , 8, 13368	.9	30	
125	Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. <i>MSystems</i> , 2019 , 4,	.6	29	
124	Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. <i>Scientific Reports</i> , 2016 , 6, 32655	.9	29	
123	Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater. <i>Frontiers in Microbiology</i> , 2017 , 8, 1932	·7	29	
122	Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. <i>Frontiers of Environmental Science and Engineering in China</i> , 2011 , 5, 1-20		29	
121	Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. <i>Environmental Pollution</i> , 2019 , 245, 290-299	.3	29	
120	Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. <i>Npj Biofilms and Microbiomes</i> , 2020 , 6, 8	.2	28	
119	Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. <i>Scientific Reports</i> , 2018 , 8, 13314	.9	28	
118	Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. <i>Soil Biology and Biochemistry</i> , 2020 , 148, 107897	.5	27	
117	Biodegradation of di-n-Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater. <i>International Journal of Environmental Research and Public Health</i> , 2015 , 12, 13510-22	.6	27	
116	Toward a theory for diversity gradients: the abundance-adaptation hypothesis. <i>Ecography</i> , 2018 , 41, 255 α	264	26	

115	Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning. <i>Frontiers in Microbiology</i> , 2016 , 7, 668	5.7	26
114	-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient. <i>Frontiers in Microbiology</i> , 2016 , 7, 1894	5.7	26
113	Elevated CO and Warming Altered Grassland Microbial Communities in Soil Top-Layers. <i>Frontiers in Microbiology</i> , 2018 , 9, 1790	5.7	26
112	Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. <i>BMC Microbiology</i> , 2015 , 15, 167	4.5	25
111	Forest conversion induces seasonal variation in microbial Ediversity. <i>Environmental Microbiology</i> , 2018 , 20, 111-123	5.2	25
110	Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil. <i>Science of the Total Environment</i> , 2019 , 667, 691-700	10.2	24
109	Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. <i>Journal of Soils and Sediments</i> , 2016 , 16, 2657-2665	3.4	24
108	The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities. <i>ISME Journal</i> , 2013 , 7, 1974-84	11.9	24
107	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. <i>BMC Genomics</i> , 2014 , 15, 753	4.5	24
106	Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. <i>Molecular Ecology Resources</i> , 2020 , 20, 170-184	8.4	23
105	Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain. <i>Frontiers in Microbiology</i> , 2016 , 7, 1184	5.7	23
104	Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands. <i>Journal of Environmental Management</i> , 2019 , 246, 157-163	7.9	22
103	Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. <i>Environmental Microbiology</i> , 2018 , 20, 2370-2385	5.2	22
102	Interdomain ecological networks between plants and microbes. <i>Molecular Ecology Resources</i> , 2019 , 19, 1565-1577	8.4	22
101	An exploration of 3Send processing signals and their tissue distribution in Oryza sativa. <i>Gene</i> , 2007 , 389, 107-13	3.8	22
100	Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. <i>FEMS Microbiology Ecology</i> , 2019 , 95,	4.3	22
99	Linking NO Emissions from Biofertilizer-Amended Soil of Tea Plantations to the Abundance and Structure of NO-Reducing Microbial Communities. <i>Environmental Science & Environmental Science & Environm</i>	10.3	21
98	Applying GeoChip Analysis to Disparate Microbial Communities. <i>Microbe Magazine</i> , 2010 , 5, 60-65		20

(2017-2016)

97	Distance-Decay Relationship for Biological Wastewater Treatment Plants. <i>Applied and Environmental Microbiology</i> , 2016 , 82, 4860-6	4.8	19	
96	Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche. <i>Science of the Total Environment</i> , 2019 , 661, 178-186	10.2	18	
95	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction. <i>Applied and Environmental Microbiology</i> , 2015 , 81, 4164-72	4.8	18	
94	Identifying qualitative effects of different grazing types on below-ground communities and function in a long-term field experiment. <i>Environmental Microbiology</i> , 2015 , 17, 841-54	5.2	17	
93	Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. <i>Plant and Soil</i> , 2018 , 423, 465-480	4.2	17	
92	Continental scale structuring of forest and soil diversity via functional traits. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1298-1308	12.3	17	
91	Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0. <i>Genomics Data</i> , 2015 , 5, 397-8		17	
90	Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. <i>Science of the Total Environment</i> , 2021 , 772, 145465	10.2	17	
89	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. <i>Environmental Science & Environmental S</i>	10.3	16	
88	Orientational DNA binding and directed transport on nanomaterial heterojunctions. <i>Nanoscale</i> , 2020 , 12, 5217-5226	7.7	16	
87	Spatial scaling of forest soil microbial communities across a temperature gradient. <i>Environmental Microbiology</i> , 2018 , 20, 3504-3513	5.2	16	
86	Design and analysis of mismatch probes for long oligonucleotide microarrays. <i>BMC Genomics</i> , 2008 , 9, 491	4.5	16	
85	Dibutyl phthalate contamination remolded the fungal community in agro-environmental system. <i>Chemosphere</i> , 2019 , 215, 189-198	8.4	16	
84	StressChip as a high-throughput tool for assessing microbial community responses to environmental stresses. <i>Environmental Science & Environmental Sci</i>	10.3	15	
83	Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. <i>Fungal Genetics and Biology</i> , 2008 , 45, 319-27	3.9	15	
82	Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community. <i>Global Change Biology</i> , 2021 , 27, 2763-2779	11.4	15	
81	Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming. <i>MBio</i> , 2016 , 7,	7.8	15	
80	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. <i>Environmental Science & Environmental Science</i>	10.3	14	

79	The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. <i>Scientific Reports</i> , 2016 , 6, 34744	4.9	14
78	Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. <i>Environmental Research</i> , 2020 , 184, 109392	7.9	14
77	Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. <i>Microbial Ecology</i> , 2018 , 75, 543-554	4.4	13
76	Soil microbiome mediated nutrients decline during forest degradation process. <i>Soil Ecology Letters</i> , 2019 , 1, 59-71	2.7	13
75	Development of HuMiChip for functional profiling of human microbiomes. <i>PLoS ONE</i> , 2014 , 9, e90546	3.7	13
74	The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow. <i>Molecular Ecology</i> , 2017 , 26, 3676-3686	5.7	12
73	Responses of Microbial Communities and Interaction Networks to Different Management Practices in Tea Plantation Soils. <i>Sustainability</i> , 2019 , 11, 4428	3.6	12
72	Soil pH exerts stronger impacts than vegetation type and plant diversity on soil bacterial community composition in subtropical broad-leaved forests. <i>Plant and Soil</i> , 2020 , 450, 273-286	4.2	12
71	Microbial functional diversity covaries with permafrost thaw-induced environmental heterogeneity in tundra soil. <i>Global Change Biology</i> , 2018 , 24, 297-307	11.4	12
70	Divergent Responses of Forest Soil Microbial Communities under Elevated CO in Different Depths of Upper Soil Layers. <i>Applied and Environmental Microbiology</i> , 2018 , 84,	4.8	12
69	Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. <i>Scientific Reports</i> , 2016 , 6, 28819	4.9	12
68	Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China. <i>Frontiers in Microbiology</i> , 2016 , 7, 1447	5.7	12
67	Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize (L.). <i>Frontiers in Microbiology</i> , 2021 , 12, 614501	5.7	12
66	Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. <i>Environmental Research</i> , 2020 , 183, 109145	7.9	11
65	Impact of Rural Domestic Wastewater Irrigation on the Physicochemical and Microbiological Properties of Pakchoi and Soil. <i>Water (Switzerland)</i> , 2015 , 7, 1825-1839	3	11
64	Saliva microbiota carry caries-specific functional gene signatures. <i>PLoS ONE</i> , 2014 , 9, e76458	3.7	11
63	Chitinophaga caeni sp. nov., isolated from activated sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2018 , 68, 2209-2213	2.2	11
62	Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	11

61	Contrasting Biogeographic Patterns of Bacterial and Archaeal Diversity in the Top- and Subsoils of Temperate Grasslands. <i>MSystems</i> , 2019 , 4,	7.6	10
60	Strain/species-specific probe design for microbial identification microarrays. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 5085-8	4.8	10
59	Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. <i>Environmental Pollution</i> , 2015 , 198, 154-60	9.3	9
58	Temperature determines the diversity and structure of N2O-reducing microbial assemblages. <i>Functional Ecology</i> , 2018 , 32, 1867-1878	5.6	9
57	Hydrogen consumption and methanogenic community evolution in anodophilic biofilms in single chamber microbial electrolysis cells under different startup modes. <i>Environmental Science: Water Research and Technology</i> , 2018 , 4, 1839-1850	4.2	9
56	Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. <i>Environmental Research</i> , 2021 , 204, 112143	7.9	9
55	Enhanced nitrate removal in an Fe0-driven autotrophic denitrification system using hydrogen-rich water. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 1380-1388	4.2	8
54	Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR. <i>Microbiome</i> , 2019 , 7, 71	16.6	8
53	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. <i>Journal of Environmental Sciences</i> , 2021 , 101, 156-167	6.4	8
52	ARGA, a pipeline for primer evaluation on antibiotic resistance genes. <i>Environment International</i> , 2019 , 128, 137-145	12.9	7
51	Elevated temperature overrides the effects of N amendment in Tibetan grassland on soil microbiome. <i>Soil Biology and Biochemistry</i> , 2019 , 136, 107532	7.5	7
50	Analysis of expressed sequence tag data and gene expression profiles involved in conidial germination of Fusarium oxysporum. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1667-71	4.8	7
49	Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. <i>PLoS ONE</i> , 2015 , 10, e0138455	3.7	7
48	Euonymus japonicus phyllosphere microbiome is ignificantly ighanged by powdery mildew. <i>Archives of Microbiology</i> , 2019 , 201, 1099-1109	3	6
47	Microbial functional genes commonly respond to elevated carbon dioxide. <i>Environment International</i> , 2020 , 144, 106068	12.9	6
46	Niche width of above- and below-ground organisms varied in predicting biodiversity profiling along a latitudinal gradient. <i>Molecular Ecology</i> , 2020 , 29, 1890-1902	5.7	6
45	Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. <i>Molecular Ecology</i> , 2021 , 30, 1072-1085	5.7	6
44	GeoChip as a metagenomics tool to analyze the microbial gene diversity along an elevation gradient. <i>Genomics Data</i> , 2014 , 2, 132-4		5

43	Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2017 , 67, 5128-5133	2.2	5
42	Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium. <i>Genome Announcements</i> , 2016 , 4,		5
41	Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. <i>Science of the Total Environment</i> , 2021 , 750, 141513	10.2	5
40	Correspondence: Reply to Analytical flaws in a continental-scale forest soil microbial diversity studyS <i>Nature Communications</i> , 2017 , 8, 15583	17.4	4
39	Pollution Gradients Altered the Bacterial Community Composition and Stochastic Process of Rural Polluted Ponds. <i>Microorganisms</i> , 2020 , 8,	4.9	4
38	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5063-5063	4.8	4
37	Application of cDNA array for studying the gene expression profile of mature appressoria of Magnaporthe grisea. <i>Journal of Zhejiang University: Science B</i> , 2007 , 8, 88-97	4.5	4
36	Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection. <i>Nanoscale Advances</i> ,	5.1	4
35	Warming reshaped the microbial hierarchical interactions. <i>Global Change Biology</i> , 2021 , 27, 6331-6347	11.4	4
34	Relative Importance of Deterministic and Stochastic Processes on Soil Microbial Community Assembly in Temperate Grasslands. <i>Microorganisms</i> , 2021 , 9,	4.9	4
33	Soil Microbial Community Assembly and Interactions Are Constrained by Nitrogen and Phosphorus in Broadleaf Forests of Southern China. <i>Forests</i> , 2020 , 11, 285	2.8	3
32	Gene expression profiling under different photoperiod/temperature conditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.). <i>Science Bulletin</i> , 2006 , 51, 175-181		3
31	High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. <i>Environmental Science & Environmental Science</i>	10.3	3
30	Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis. <i>Frontiers in Microbiology</i> , 2021 , 12, 722626	5.7	3
29	iNAP: An integrated network analysis pipeline for microbiome studies		3
28	Expression Profile During the Development of Appressoria Induced by Hydrophobic Surfaces in Magnaporthe grisea Y34. <i>Journal of Phytopathology</i> , 2010 , 158, 143-153	1.8	2
27	Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. <i>Environmental Microbiology</i> , 2021 ,	5.2	2
26	Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica campestris). <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2016 , 66, 5056-5060	2.2	2

25	Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. <i>Science of the Total Environment</i> , 2021 , 767, 144966	10.2	2
24	Exploration of Intrinsic Microbial Community Modulators in the Rice Endosphere Indicates a Key Role of Distinct Bacterial Taxa Across Different Cultivars. <i>Frontiers in Microbiology</i> , 2021 , 12, 629852	5.7	2
23	Distinct Functions and Assembly Mechanisms of Soil Abundant and Rare Bacterial Taxa Under Increasing Pyrene Stresses. <i>Frontiers in Microbiology</i> , 2021 , 12, 689762	5.7	2
22	Stimulation of soil microbial functioning by elevated CO2 may surpass effects mediated by irrigation in a semiarid grassland. <i>Geoderma</i> , 2021 , 401, 115162	6.7	2
21	Meadow degradation increases spatial turnover rates of the fungal community through both niche selection and dispersal limitation. <i>Science of the Total Environment</i> , 2021 , 798, 149362	10.2	2
20	The Succession of Bacterial Community Attached on Biodegradable Plastic Mulches During the Degradation in Soil <i>Frontiers in Microbiology</i> , 2021 , 12, 785737	5.7	2
19	Application of Organic Fertilizer Changes the Rhizosphere Microbial Communities of a Gramineous Grass on Qinghaillibet Plateau. <i>Microorganisms</i> , 2022 , 10, 1148	4.9	2
18	Correction to GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. <i>Environmental Science & Environmental Science & Envi</i>	10.3	1
17	What drives the assembly of plant-associated protist microbiomes?		1
16	Effects of graphene oxide on PCR amplification for microbial community survey. <i>BMC Microbiology</i> , 2020 , 20, 278	4.5	1
15	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. <i>Environmental Microbiology</i> , 2016 , 8, 1048	5.2	1
14	Assessment of microbial Ediversity in one meter squared topsoil. Soil Ecology Letters, 1	2.7	1
13	Warming-driven migration of core microbiota indicates soil property changes at continental scale. <i>Science Bulletin</i> , 2021 , 66, 2025-2035	10.6	1
12	Sessile methanogens dominated cathodic biofilm: Distribution and network in physiological transitions. <i>Science of the Total Environment</i> , 2021 , 795, 148724	10.2	1
11	Ecosystem restoration and belowground multifunctionality: A network view <i>Ecological Applications</i> , 2022 , e2575	4.9	1
10	Fungal dynamics and potential functions during anaerobic digestion of food waste <i>Environmental Research</i> , 2022 , 212, 113298	7.9	1
9	Protistan consumers and phototrophs are more sensitive than bacteria and fungi to pyrene exposure in soil <i>Science of the Total Environment</i> , 2022 , 822, 153539	10.2	0
8	Homogeneous Selection and Dispersal Limitation Dominate the Effect of Soil Strata Under Warming Condition <i>Frontiers in Microbiology</i> , 2022 , 13, 801083	5.7	O

7	The large-scale spatial patterns of ecological networks between phytoplankton and zooplankton in coastal marine ecosystems <i>Science of the Total Environment</i> , 2022 , 154285	10.2	О
6	The Coexistence Relationship Between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis <i>Frontiers in Microbiology</i> , 2021 , 12, 745582	5.7	0
5	Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species <i>Journal of Hazardous Materials</i> , 2022 , 435, 128985	12.8	О
4	DARHD: a sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. <i>Journal of Hazardous Materials</i> , 2022 , 129230	12.8	O
3	Impact of long-term application of manure and inorganic fertilizers on common soil bacteria in different soil types. <i>Agriculture, Ecosystems and Environment</i> , 2022 , 337, 108044	5.7	О
2	Monitoring Microbial Activity with GeoChip 2014 , 261-P1		
1	Relationships Between Soil Microbial Diversities Across an Aridity Gradient in Temperate Grasslands: Soil Microbial Diversity Relationships <i>Microbial Ecology</i> , 2022 , 1	4.4	