List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6024727/publications.pdf Version: 2024-02-01

		11651	11607
227	21,551	70	135
papers	citations	h-index	g-index
238	238	238	16331
all docs	docs citations	times ranked	citing authors

YE DENC

#	Article	IF	CITATIONS
1	Molecular ecological network analyses. BMC Bioinformatics, 2012, 13, 113.	2.6	1,917
2	Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria. Science, 2010, 330, 204-208.	12.6	1,109
3	Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO ₂ . MBio, 2011, 2, .	4.1	771
4	Functional Molecular Ecological Networks. MBio, 2010, 1, .	4.1	717
5	Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E836-45.	7.1	595
6	Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME Journal, 2016, 10, 1669-1681.	9.8	593
7	Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Climate Change, 2012, 2, 106-110.	18.8	502
8	Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 2019, 4, 1183-1195.	13.3	491
9	A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16892-16898.	7.1	482
10	Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, 2016, 7, 12083.	12.8	419
11	Reproducibility and quantitation of amplicon sequencing-based detection. ISME Journal, 2011, 5, 1303-1313.	9.8	412
12	High-Throughput Metagenomic Technologies for Complex Microbial Community Analysis: Open and Closed Formats. MBio, 2015, 6, .	4.1	357
13	Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environmental Microbiology, 2016, 18, 205-218.	3.8	339
14	Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME Journal, 2010, 4, 660-672.	9.8	332
15	GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME Journal, 2010, 4, 1167-1179.	9.8	300
16	Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 2017, 26, 6170-6182.	3.9	299
17	Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community. MBio, 2013, 4, .	4.1	293
18	Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Climate Change, 2016, 6, 595-600.	18.8	260

#	Article	IF	CITATIONS
19	Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO ₂ . Ecology Letters, 2010, 13, 564-575.	6.4	252
20	The microbial gene diversity along an elevation gradient of the Tibetan grassland. ISME Journal, 2014, 8, 430-440.	9.8	249
21	Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME Journal, 2012, 6, 451-460.	9.8	240
22	Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiology, 2015, 15, 125.	3.3	222
23	Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands. ISME Journal, 2017, 11, 1345-1358.	9.8	218
24	Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biology and Biochemistry, 2017, 104, 208-217.	8.8	205
25	Plant diversity represents the prevalent determinant of soil fungal community structure across temperate grasslands in northern China. Soil Biology and Biochemistry, 2017, 110, 12-21.	8.8	202
26	Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biology and Biochemistry, 2013, 65, 33-38.	8.8	189
27	GeoChip 4: a functional geneâ€arrayâ€based highâ€throughput environmental technology for microbial community analysis. Molecular Ecology Resources, 2014, 14, 914-928.	4.8	183
28	Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME Journal, 2011, 5, 403-413.	9.8	178
29	Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME Journal, 2014, 8, 1879-1891.	9.8	157
30	Temperature sensitivity of SOM decomposition is linked with a Kâ€selected microbial community. Global Change Biology, 2021, 27, 2763-2779.	9.5	155
31	Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Molecular Ecology, 2014, 23, 2988-2999.	3.9	152
32	Higher precipitation strengthens the microbial interactions in semiâ€arid grassland soils. Global Ecology and Biogeography, 2018, 27, 570-580.	5.8	151
33	GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4840-4845.	7.1	139
34	Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 2017, 601-602, 703-712.	8.0	138
35	Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME Journal, 2017, 11, 1825-1835.	9.8	136
36	Long-term soil transplant simulating climate change with latitude significantly alters microbial temporal turnover. ISME Journal, 2015, 9, 2561-2572.	9.8	134

#	Article	IF	CITATIONS
37	NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics, 2019, 35, 1040-1048.	4.1	134
38	Soil Microbial Community Responses to a Decade of Warming as Revealed by Comparative Metagenomics. Applied and Environmental Microbiology, 2014, 80, 1777-1786.	3.1	131
39	Soil bacterial quantification approaches coupling with relative abundances reflecting the changes of taxa. Scientific Reports, 2017, 7, 4837.	3.3	131
40	Impacts of the Three Gorges Dam on microbial structure and potential function. Scientific Reports, 2015, 5, 8605.	3.3	129
41	iNAP: An integrated network analysis pipeline for microbiome studies. , 2022, 1, .		126
42	Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil and Tillage Research, 2019, 195, 104356.	5.6	117
43	The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME Journal, 2012, 6, 259-272.	9.8	110
44	Deterministic Assembly and Diversity Gradient Altered the Biofilm Community Performances of Bioreactors. Environmental Science & amp; Technology, 2019, 53, 1315-1324.	10.0	109
45	Evaluation of the reproducibility of amplicon sequencing with Illumina MiSeq platform. PLoS ONE, 2017, 12, e0176716.	2.5	107
46	Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Molecular Ecology, 2015, 24, 5175-5185.	3.9	106
47	Responses of bacterial community to dibutyl phthalate pollution in a soil-vegetable ecosystem. Journal of Hazardous Materials, 2018, 353, 142-150.	12.4	104
48	Responses of microbial community functional structures to pilot-scale uranium <i>in situ</i> bioremediation. ISME Journal, 2010, 4, 1060-1070.	9.8	98
49	Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Scientific Reports, 2015, 5, 7994.	3.3	97
50	Random Sampling Process Leads to Overestimation of β-Diversity of Microbial Communities. MBio, 2013, 4, e00324-13.	4.1	96
51	The Great Oxidation Event expanded the genetic repertoire of arsenic metabolism and cycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10414-10421.	7.1	96
52	GeoChipâ€based analysis of functional microbial communities during the reoxidation of a bioreduced uraniumâ€contaminated aquifer. Environmental Microbiology, 2009, 11, 2611-2626.	3.8	95
53	Soil bacterial diversity patterns and drivers along an elevational gradient on <scp>S</scp> hennongjia Mountain, <scp>C</scp> hina. Microbial Biotechnology, 2015, 8, 739-746.	4.2	94
54	Elevated Carbon Dioxide Alters the Structure of Soil Microbial Communities. Applied and Environmental Microbiology, 2012, 78, 2991-2995.	3.1	93

#	Article	IF	CITATIONS
55	Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Molecular Ecology, 2017, 26, 6608-6620.	3.9	92
56	A multiplayer game: species of <i>Clostridium</i> , <i>Acinetobacter</i> , and <i>Pseudomonas</i> are responsible for the persistence of antibiotic resistance genes in manureâ€treated soils. Environmental Microbiology, 2016, 18, 3494-3508.	3.8	91
57	Functional Gene Differences in Soil Microbial Communities from Conventional, Low-Input, and Organic Farmlands. Applied and Environmental Microbiology, 2013, 79, 1284-1292.	3.1	90
58	Response of chloramphenicol-reducing biocathode resistome to continuous electrical stimulation. Water Research, 2019, 148, 398-406.	11.3	90
59	Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 2015, 91, fiv133.	2.7	87
60	Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. Science of the Total Environment, 2021, 772, 145465.	8.0	85
61	Development of a Common Oligonucleotide Reference Standard for Microarray Data Normalization and Comparison across Different Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 1088-1094.	3.1	83
62	Warming reshaped the microbial hierarchical interactions. Global Change Biology, 2021, 27, 6331-6347.	9.5	81
63	Impact of Metal Pollution and <i>Thlaspi caerulescens</i> Growth on Soil Microbial Communities. Applied and Environmental Microbiology, 2010, 76, 7843-7853.	3.1	80
64	Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME Journal, 2014, 8, 714-726.	9.8	80
65	Long-Term Oil Contamination Alters the Molecular Ecological Networks of Soil Microbial Functional Genes. Frontiers in Microbiology, 2016, 7, 60.	3.5	80
66	The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Science of the Total Environment, 2018, 628-629, 969-978.	8.0	79
67	GeoChip-Based Analysis of the Functional Gene Diversity and Metabolic Potential of Microbial Communities in Acid Mine Drainage. Applied and Environmental Microbiology, 2011, 77, 991-999.	3.1	78
68	Comparative metagenomics reveals impact of contaminants on groundwater microbiomes. Frontiers in Microbiology, 2015, 6, 1205.	3.5	77
69	mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community. Water Research, 2018, 136, 192-199.	11.3	77
70	Geochip-Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes. Environmental Science & Technology, 2010, 44, 7729-7735.	10.0	76
71	Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells. Applied Energy, 2016, 183, 1133-1141.	10.1	76
72	Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Molecular Ecology, 2016, 25, 2937-2948.	3.9	76

#	Article	IF	CITATIONS
73	Nearly a decadeâ€long repeatable seasonal diversity patterns of bacterioplankton communities in the eutrophic Lake Donghu (Wuhan, China). Molecular Ecology, 2017, 26, 3839-3850.	3.9	76
74	The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis. Applied Soil Ecology, 2017, 120, 239-246.	4.3	76
75	Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Frontiers in Microbiology, 2017, 8, 945.	3.5	76
76	Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology and Biochemistry, 2017, 104, 18-29.	8.8	75
77	Development of functional gene microarrays for microbial community analysis. Current Opinion in Biotechnology, 2012, 23, 49-55.	6.6	73
78	Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. Soil Biology and Biochemistry, 2018, 123, 80-86.	8.8	73
79	Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biology and Biochemistry, 2017, 105, 227-235.	8.8	72
80	Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiology Ecology, 2009, 70, 324-333.	2.7	70
81	Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication. Chemosphere, 2017, 177, 317-325.	8.2	70
82	Biogeographic patterns of microbial co-occurrence ecological networks in six American forests. Soil Biology and Biochemistry, 2020, 148, 107897.	8.8	68
83	Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria. Npj Biofilms and Microbiomes, 2020, 6, 8.	6.4	68
84	Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. ICES Journal of Marine Science, 2016, 73, 865-875.	2.5	67
85	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology Reports, 2016, 8, 1048-1057.	2.4	66
86	GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. Environmental Science & Technology, 2012, 46, 5824-5833.	10.0	64
87	Interdomain ecological networks between plants and microbes. Molecular Ecology Resources, 2019, 19, 1565-1577.	4.8	64
88	Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes. FEMS Microbiology Ecology, 2019, 95, .	2.7	62
89	Analysis of the functional gene structure and metabolic potential of microbial community in high arsenic groundwater. Water Research, 2017, 123, 268-276.	11.3	61
90	Latitudinal Distribution of Ammonia-Oxidizing Bacteria and Archaea in the Agricultural Soils of Eastern China. Applied and Environmental Microbiology, 2014, 80, 5593-5602.	3.1	60

#	Article	IF	CITATIONS
91	Recurrent horizontal transfer of arsenite methyltransferase genes facilitated adaptation of life to arsenic. Scientific Reports, 2017, 7, 7741.	3.3	60
92	Shifts of functional gene representation in wheat rhizosphere microbial communities under elevated ozone. ISME Journal, 2013, 7, 660-671.	9.8	59
93	Over 150ÂYears of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity. MBio, 2015, 6,	4.1	57
94	Elevated carbon dioxide accelerates the spatial turnover of soil microbial communities. Global Change Biology, 2016, 22, 957-964.	9.5	57
95	Assembly Patterns of the Rhizosphere Microbiome Along the Longitudinal Root Axis of Maize (Zea mays) Tj ETQq1	1.0.7843 3.5	14 rgBT /0
96	Adaptive shifts of bacterioplankton communities in response to nitrogen enrichment in a highly polluted river. Environmental Pollution, 2019, 245, 290-299.	7.5	55
97	Habitat environments impacted the gut microbiome of long-distance migratory swan geese but central species conserved. Scientific Reports, 2018, 8, 13314.	3.3	54
98	Bacterial communities and potential waterborne pathogens within the typical urban surface waters. Scientific Reports, 2018, 8, 13368.	3.3	54
99	Functional Gene Array-Based Ultrasensitive and Quantitative Detection of Microbial Populations in Complex Communities. MSystems, 2019, 4, .	3.8	54
100	Bioremediation of dibutyl phthalate in a simulated agricultural ecosystem by Gordonia sp. strain QH-11 and the microbial ecological effects in soil. Science of the Total Environment, 2019, 667, 691-700.	8.0	54
101	Dynamics of Microbial Community Composition and Function during In Situ Bioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 3860-3869.	3.1	51
102	Widespread Distribution of Soluble Di-Iron Monooxygenase (SDIMO) Genes in Arctic Groundwater Impacted by 1,4-Dioxane. Environmental Science & Technology, 2013, 47, 9950-9958.	10.0	51
103	Elevated CO2 and Warming Altered Grassland Microbial Communities in Soil Top-Layers. Frontiers in Microbiology, 2018, 9, 1790.	3.5	51
104	Exploring the accuracy of ampliconâ€based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources, 2020, 20, 170-184.	4.8	49
105	Fungal Communities Respond to Long-Term CO ₂ Elevation by Community Reassembly. Applied and Environmental Microbiology, 2015, 81, 2445-2454.	3.1	48
106	Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Scientific Reports, 2015, 5, 9316.	3.3	48
107	Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiology, 2013, 13, 124.	3.3	47
108	Hydrogen peroxideâ€induced oxidative stress responses in <i>Desulfovibrio vulgaris</i> Hildenborough. Environmental Microbiology, 2010, 12, 2645-2657.	3.8	46

#	Article	IF	CITATIONS
109	Warming Alters Expressions of Microbial Functional Genes Important to Ecosystem Functioning. Frontiers in Microbiology, 2016, 7, 668.	3.5	46
110	Characterising the interspecific variations and convergence of gut microbiota in Anseriformes herbivores at wintering areas. Scientific Reports, 2016, 6, 32655.	3.3	46
111	Linking N ₂ O Emissions from Biofertilizer-Amended Soil of Tea Plantations to the Abundance and Structure of N ₂ O-Reducing Microbial Communities. Environmental Science & Technology, 2018, 52, 11338-11345.	10.0	46
112	Reconstruction of metabolic networks in a fluoranthene-degrading enrichments from polycyclic aromatic hydrocarbon polluted soil. Journal of Hazardous Materials, 2016, 318, 90-98.	12.4	44
113	Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater. Frontiers in Microbiology, 2017, 8, 1932.	3.5	44
114	Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming. MBio, 2016, 7, .	4.1	43
115	Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Molecular Ecology, 2021, 30, 1072-1085.	3.9	43
116	Correlation of Genomic and Physiological Traits of Thermoanaerobacter Species with Biofuel Yields. Applied and Environmental Microbiology, 2011, 77, 7998-8008.	3.1	42
117	Microbial Functional Gene Diversity with a Shift of Subsurface Redox Conditions during <i>In Situ</i> Uranium Reduction. Applied and Environmental Microbiology, 2012, 78, 2966-2972.	3.1	42
118	Enhancement of facultative anaerobic denitrifying communities by oxygen release from roots of the macrophyte in constructed wetlands. Journal of Environmental Management, 2019, 246, 157-163.	7.8	42
119	Available nitrogen is the key factor influencing soil microbial functional gene diversity in tropical rainforest. BMC Microbiology, 2015, 15, 167.	3.3	41
120	Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities. Frontiers of Environmental Science and Engineering in China, 2011, 5, 1-20.	0.8	40
121	Exploring abundance, diversity and variation of a widespread antibiotic resistance gene in wastewater treatment plants. Environment International, 2018, 117, 186-195.	10.0	40
122	Biodegradation of di-n-Butyl Phthalate by Achromobacter sp. Isolated from Rural Domestic Wastewater. International Journal of Environmental Research and Public Health, 2015, 12, 13510-13522.	2.6	38
123	Dramatic Increases of Soil Microbial Functional Gene Diversity at the Treeline Ecotone of Changbai Mountain. Frontiers in Microbiology, 2016, 7, 1184.	3.5	38
124	Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics, 2014, 15, 753.	2.8	36
125	Toward a theory for diversity gradients: the abundance–adaptation hypothesis. Ecography, 2018, 41, 255-264.	4.5	36
126	NifH-Harboring Bacterial Community Composition across an Alaskan Permafrost Thaw Gradient. Frontiers in Microbiology, 2016, 7, 1894.	3.5	35

#	Article	IF	CITATIONS
127	Geographic distance and amorphous iron affect the abundance and distribution of Geobacteraceae in paddy soils in China. Journal of Soils and Sediments, 2016, 16, 2657-2665.	3.0	35
128	Electron acceptors for anaerobic oxidation of methane drive microbial community structure and diversity in mud volcanoes. Environmental Microbiology, 2018, 20, 2370-2385.	3.8	34
129	Continental scale structuring of forest and soil diversity via functional traits. Nature Ecology and Evolution, 2019, 3, 1298-1308.	7.8	34
130	Soil microbial beta-diversity is linked with compositional variation in aboveground plant biomass in a semi-arid grassland. Plant and Soil, 2018, 423, 465-480.	3.7	33
131	Forest conversion induces seasonal variation in microbial βâ€diversity. Environmental Microbiology, 2018, 20, 111-123.	3.8	33
132	High-Throughput Single-Cell Technology Reveals the Contribution of Horizontal Gene Transfer to Typical Antibiotic Resistance Gene Dissemination in Wastewater Treatment Plants. Environmental Science & Technology, 2021, 55, 11824-11834.	10.0	33
133	The PathoChip, a functional gene array for assessing pathogenic properties of diverse microbial communities. ISME Journal, 2013, 7, 1974-1984.	9.8	32
134	Divergent Responses of Forest Soil Microbial Communities under Elevated CO 2 in Different Depths of Upper Soil Layers. Applied and Environmental Microbiology, 2018, 84, .	3.1	31
135	Soil microbiome mediated nutrients decline during forest degradation process. Soil Ecology Letters, 2019, 1, 59-71.	4.5	29
136	Orientational DNA binding and directed transport on nanomaterial heterojunctions. Nanoscale, 2020, 12, 5217-5226.	5.6	29
137	Stochastic processes regulate belowground community assembly in alpine grasslands on the Tibetan Plateau. Environmental Microbiology, 2022, 24, 179-194.	3.8	28
138	Large-scale expressed sequence tag analysis for the chestnut blight fungus Cryphonectria parasitica. Fungal Genetics and Biology, 2008, 45, 319-327.	2.1	27
139	Dibutyl phthalate contamination remolded the fungal community in agro-environmental system. Chemosphere, 2019, 215, 189-198.	8.2	27
140	Soil pH exerts stronger impacts than vegetation type and plant diversity on soil bacterial community composition in subtropical broad-leaved forests. Plant and Soil, 2020, 450, 273-286.	3.7	27
141	Distance-Decay Relationship for Biological Wastewater Treatment Plants. Applied and Environmental Microbiology, 2016, 82, 4860-4866.	3.1	26
142	Electro-driven methanogenic microbial community diversity and variability in the electron abundant niche. Science of the Total Environment, 2019, 661, 178-186.	8.0	26
143	Distinct Functions and Assembly Mechanisms of Soil Abundant and Rare Bacterial Taxa Under Increasing Pyrene Stresses. Frontiers in Microbiology, 2021, 12, 689762.	3.5	26
144	Succession of diversity, functions, and interactions of the fungal community in activated sludge under aromatic hydrocarbon stress. Environmental Research, 2022, 204, 112143.	7.5	26

#	Article	IF	CITATIONS
145	Applying GeoChip Analysis to Disparate Microbial Communities. Microbe Magazine, 2010, 5, 60-65.	0.4	25
146	The Succession of Bacterial Community Attached on Biodegradable Plastic Mulches During the Degradation in Soil. Frontiers in Microbiology, 2021, 12, 785737.	3.5	25
147	Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained <i>In Situ</i> U(VI) Reduction. Applied and Environmental Microbiology, 2015, 81, 4164-4172.	3.1	24
148	Spatial scaling of forest soil microbial communities across a temperature gradient. Environmental Microbiology, 2018, 20, 3504-3513.	3.8	24
149	Contrasting Biogeographic Patterns of Bacterial and Archaeal Diversity in the Top- and Subsoils of Temperate Grasslands. MSystems, 2019, 4, .	3.8	24
150	Responses of Microbial Communities and Interaction Networks to Different Management Practices in Tea Plantation Soils. Sustainability, 2019, 11, 4428.	3.2	24
151	Meadow degradation increases spatial turnover rates of the fungal community through both niche selection and dispersal limitation. Science of the Total Environment, 2021, 798, 149362.	8.0	24
152	Interaction of graphene-family nanomaterials with microbial communities in sequential batch reactors revealed by high-throughput sequencing. Environmental Research, 2020, 184, 109392.	7.5	24
153	Taxonomic and Functional Analyses of the Supragingival Microbiome from Caries-Affected and Caries-Free Hosts. Microbial Ecology, 2018, 75, 543-554.	2.8	23
154	Chitinophaga caeni sp. nov., isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2209-2213.	1.7	23
155	An exploration of 3′-end processing signals and their tissue distribution in Oryza sativa. Gene, 2007, 389, 107-113.	2.2	22
156	The microbially mediated soil organic carbon loss under degenerative succession in an alpine meadow. Molecular Ecology, 2017, 26, 3676-3686.	3.9	22
157	Dynamic Succession of Groundwater Sulfate-Reducing Communities during Prolonged Reduction of Uranium in a Contaminated Aquifer. Environmental Science & Technology, 2017, 51, 3609-3620.	10.0	22
158	Microbial functional diversity covaries with permafrost thawâ€induced environmental heterogeneity in tundra soil. Global Change Biology, 2018, 24, 297-307.	9.5	22
159	Relative Importance of Deterministic and Stochastic Processes on Soil Microbial Community Assembly in Temperate Grasslands. Microorganisms, 2021, 9, 1929.	3.6	22
160	Design and analysis of mismatch probes for long oligonucleotide microarrays. BMC Genomics, 2008, 9, 491.	2.8	21
161	Analyses of the influencing factors of soil microbial functional gene diversity in tropical rainforest based on GeoChip 5.0. Genomics Data, 2015, 5, 397-398.	1.3	21
162	Identifying qualitative effects of different grazing types on belowâ€ground communities and function in a longâ€ŧerm field experiment. Environmental Microbiology, 2015, 17, 841-854.	3.8	21

#	Article	IF	CITATIONS
163	Elevated nitrate simplifies microbial community compositions and interactions in sulfide-rich river sediments. Science of the Total Environment, 2021, 750, 141513.	8.0	21
164	Fungi-Bacteria Associations in Wilt Diseased Rhizosphere and Endosphere by Interdomain Ecological Network Analysis. Frontiers in Microbiology, 2021, 12, 722626.	3.5	21
165	Grass-legume mixtures enhance forage production via the bacterial community. Agriculture, Ecosystems and Environment, 2022, 338, 108087.	5.3	21
166	Elevated temperature overrides the effects of N amendment in Tibetan grassland on soil microbiome. Soil Biology and Biochemistry, 2019, 136, 107532.	8.8	20
167	Microbial functional genes commonly respond to elevated carbon dioxide. Environment International, 2020, 144, 106068.	10.0	20
168	Microbial diversity accumulates in a downstream direction in the Three Gorges Reservoir. Journal of Environmental Sciences, 2021, 101, 156-167.	6.1	20
169	A Slow-Release Substrate Stimulates Groundwater Microbial Communities for Long-Term in Situ Cr(VI) Reduction. Environmental Science & Technology, 2015, 49, 12922-12931.	10.0	19
170	Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China. Frontiers in Microbiology, 2016, 7, 1447.	3.5	19
171	Temperature determines the diversity and structure of N ₂ Oâ€reducing microbial assemblages. Functional Ecology, 2018, 32, 1867-1878.	3.6	19
172	The shift of microbial communities and their roles in sulfur and iron cycling in a copper ore bioleaching system. Scientific Reports, 2016, 6, 34744.	3.3	18
173	Development of HuMiChip for Functional Profiling of Human Microbiomes. PLoS ONE, 2014, 9, e90546.	2.5	18
174	StressChip as a High-Throughput Tool for Assessing Microbial Community Responses to Environmental Stresses. Environmental Science & amp; Technology, 2013, 47, 9841-9849.	10.0	17
175	Saliva Microbiota Carry Caries-Specific Functional Gene Signatures. PLoS ONE, 2014, 9, e76458.	2.5	16
176	Characterization and Genomic Analysis of a Highly Efficient Dibutyl Phthalate-Degrading Bacterium Gordonia sp. Strain QH-12. International Journal of Molecular Sciences, 2016, 17, 1012.	4.1	16
177	Unraveling the diversity of sedimentary sulfate-reducing prokaryotes (SRP) across Tibetan saline lakes using epicPCR. Microbiome, 2019, 7, 71.	11.1	16
178	Pollution Gradients Altered the Bacterial Community Composition and Stochastic Process of Rural Polluted Ponds. Microorganisms, 2020, 8, 311.	3.6	16
179	Niche width of above―and belowâ€ground organisms varied in predicting biodiversity profiling along a latitudinal gradient. Molecular Ecology, 2020, 29, 1890-1902.	3.9	16
180	Strain/Species-Specific Probe Design for Microbial Identification Microarrays. Applied and Environmental Microbiology, 2013, 79, 5085-5088.	3.1	15

#	Article	IF	CITATIONS
181	Impact of Rural Domestic Wastewater Irrigation on the Physicochemical and Microbiological Properties of Pakchoi and Soil. Water (Switzerland), 2015, 7, 1825-1839.	2.7	15
182	Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient. Scientific Reports, 2016, 6, 28819.	3.3	15
183	Euonymus japonicus phyllosphere microbiome isÂsignificantlyÂchanged by powdery mildew. Archives of Microbiology, 2019, 201, 1099-1109.	2.2	15
184	Organic fertilizer potentiates the transfer of typical antibiotic resistance gene among special bacterial species. Journal of Hazardous Materials, 2022, 435, 128985.	12.4	15
185	ARGA, a pipeline for primer evaluation on antibiotic resistance genes. Environment International, 2019, 128, 137-145.	10.0	14
186	Florfenicol restructured the microbial interaction network for wastewater treatment by microbial electrolysis cells. Environmental Research, 2020, 183, 109145.	7.5	14
187	Sampling cores and sequencing depths affected the measurement of microbial diversity in soil quadrats. Science of the Total Environment, 2021, 767, 144966.	8.0	14
188	Patulibacter brassicae sp. nov., isolated from rhizosphere soil of Chinese cabbage (Brassica) Tj ETQq0 0 0 rgBT /O	verlock 10 1.7) Tf 50 462 T $_{13}^{++++++++++++++++++++++++++++++++++++$
189	Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection. Nanoscale Advances, 2021, 3, 5941-5947.	4.6	12
190	Warming-driven migration of core microbiota indicates soil property changes at continental scale. Science Bulletin, 2021, 66, 2025-2035.	9.0	12
191	Enhanced nitrate removal in an Fe ⁰ -driven autotrophic denitrification system using hydrogen-rich water. Environmental Science: Water Research and Technology, 2019, 5, 1380-1388.	2.4	11
192	Exploration of Intrinsic Microbial Community Modulators in the Rice Endosphere Indicates a Key Role of Distinct Bacterial Taxa Across Different Cultivars. Frontiers in Microbiology, 2021, 12, 629852.	3.5	11
193	Gordonia phthalatica sp. nov., a di-n-butyl phthalate-degrading bacterium isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 5128-5133.	1.7	11

194	Ecosystem restoration and belowground multifunctionality: A network view. Ecological Applications, 2022, 32, e2575.	3.8	11
195	Application of Organic Fertilizer Changes the Rhizosphere Microbial Communities of a Gramineous Grass on Qinghai–Tibet Plateau. Microorganisms, 2022, 10, 1148.	3.6	11
196	Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle. Environmental Pollution, 2015, 198, 154-160.	7.5	10
197	Hydrogen consumption and methanogenic community evolution in anodophilic biofilms in single chamber microbial electrolysis cells under different startup modes. Environmental Science: Water Research and Technology, 2018, 4, 1839-1850.	2.4	10
198	Soil Microbial Community Assembly and Interactions Are Constrained by Nitrogen and Phosphorus in Broadleaf Forests of Southern China. Forests, 2020, 11, 285.	2.1	10

#	Article	IF	CITATIONS
199	Assessment of microbial α-diversity in one meter squared topsoil. Soil Ecology Letters, 2022, 4, 224-236.	4.5	10
200	Stimulation of soil microbial functioning by elevated CO2 may surpass effects mediated by irrigation in a semiarid grassland. Geoderma, 2021, 401, 115162.	5.1	10
201	Network analysis reveals the root endophytic fungi associated with Fusarium root rot invasion. Applied Soil Ecology, 2022, 178, 104567.	4.3	10
202	<scp>ddPCR</scp> surpasses classical <scp>qPCR</scp> technology in quantitating bacteria and fungi in the environment. Molecular Ecology Resources, 2022, 22, 2587-2598.	4.8	9
203	The large-scale spatial patterns of ecological networks between phytoplankton and zooplankton in coastal marine ecosystems. Science of the Total Environment, 2022, 827, 154285.	8.0	8
204	Analysis of Expressed Sequence Tag Data and Gene Expression Profiles Involved in Conidial Germination of Fusarium oxysporum. Applied and Environmental Microbiology, 2006, 72, 1667-1671.	3.1	7
205	Microbial Community Dynamics and Activity Link to Indigo Production from Indole in Bioaugmented Activated Sludge Systems. PLoS ONE, 2015, 10, e0138455.	2.5	7
206	Relationships Between Soil Microbial Diversities Across an Aridity Gradient in Temperate Grasslands. Microbial Ecology, 2023, 85, 1013-1027.	2.8	7
207	DARHD: A sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. Journal of Hazardous Materials, 2022, 436, 129230.	12.4	7
208	Impact of long-term application of manure and inorganic fertilizers on common soil bacteria in different soil types. Agriculture, Ecosystems and Environment, 2022, 337, 108044.	5.3	7
209	The Coexistence Relationship Between Plants and Soil Bacteria Based on Interdomain Ecological Network Analysis. Frontiers in Microbiology, 2021, 12, 745582.	3.5	6
210	Fungal dynamics and potential functions during anaerobic digestion of food waste. Environmental Research, 2022, 212, 113298.	7.5	6
211	Gene expression profiling under different photoperiod/temperature conditions in a photoperiod-/thermo-sensitive genic male sterile line of rice (Oryza sativa L.). Science Bulletin, 2006, 51, 175-181.	1.7	5
212	GeoChip as a metagenomics tool to analyze the microbial gene diversity along an elevation gradient. Genomics Data, 2014, 2, 132-134.	1.3	5
213	Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di- n -Butyl-Phthalate-Degrading Bacterium. Genome Announcements, 2016, 4, .	0.8	5
214	Sessile methanogens dominated cathodic biofilm: Distribution and network in physiological transitions. Science of the Total Environment, 2021, 795, 148724.	8.0	5
215	Protistan consumers and phototrophs are more sensitive than bacteria and fungi to pyrene exposure in soil. Science of the Total Environment, 2022, 822, 153539.	8.0	5
216	Application of cDNA array for studying the gene expression profile of mature appressoria of Magnaporthe grisea. Journal of Zhejiang University: Science B, 2007, 8, 88-97.	2.8	4

#	Article	IF	CITATIONS
217	Dynamics of Microbial Community Composition and Function duringIn SituBioremediation of a Uranium-Contaminated Aquifer. Applied and Environmental Microbiology, 2011, 77, 5063-5063.	3.1	4
218	Correspondence: Reply to â€~Analytical flaws in a continental-scale forest soil microbial diversity study'. Nature Communications, 2017, 8, 15583.	12.8	4
219	Effects of graphene oxide on PCR amplification for microbial community survey. BMC Microbiology, 2020, 20, 278.	3.3	4
220	ARDEP, a Rapid Degenerate Primer Design Pipeline Based on k-mers for Amplicon Microbiome Studies. International Journal of Environmental Research and Public Health, 2020, 17, 5958.	2.6	4
221	Homogeneous Selection and Dispersal Limitation Dominate the Effect of Soil Strata Under Warming Condition. Frontiers in Microbiology, 2022, 13, 801083.	3.5	4
222	Expression Profile During the Development of Appressoria Induced by Hydrophobic Surfaces in <i>Magnaporthe grisea</i> Y34. Journal of Phytopathology, 2010, 158, 143-153.	1.0	2
223	The Lifestyle-Dependent Microbial Interactions Vary Between Upstream and Downstream of the Three Gorges Dam. Frontiers in Ecology and Evolution, 2021, 9, .	2.2	2
224	Correction to GeoChip-Based Analysis of Microbial Functional Gene Diversity in a Landfill Leachate-Contaminated Aquifer. Environmental Science & Technology, 2013, 47, 2142-2142.	10.0	1
225	Plant community, geographic distance and abiotic factors play different roles in predicting AMF biogeography at the regional scale in northern China. Environmental Microbiology, 2016, 8, 1048.	3.8	1
226	Molecular Ecological Network of Microbial Communities. , 2013, , 1-8.		1
227	Monitoring Microbial Activity with GeoChip. , 0, , 261-P1.		0