Mingwen Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6024678/publications.pdf

Version: 2024-02-01

363 papers 13,985 citations

23567 58 h-index 99 g-index

365 all docs 365 docs citations

365 times ranked 13627 citing authors

#	Article	IF	CITATIONS
1	Broadband Fewâ€Layer MoS ₂ Saturable Absorbers. Advanced Materials, 2014, 26, 3538-3544.	21.0	645
2	From UV to Nearâ€Infrared, WS ₂ Nanosheet: A Novel Photocatalyst for Full Solar Light Spectrum Photodegradation. Advanced Materials, 2015, 27, 363-369.	21.0	494
3	Phagraphene: A Low-Energy Graphene Allotrope Composed of 5–6–7 Carbon Rings with Distorted Dirac Cones. Nano Letters, 2015, 15, 6182-6186.	9.1	482
4	Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides. Advanced Materials, 2013, 25, 2200-2204.	21.0	275
5	Ultrabroadband MoS ₂ Photodetector with Spectral Response from 445 to 2717 nm. Advanced Materials, 2017, 29, 1605972.	21.0	256
6	A Photoresponsive Rutile TiO ₂ Heterojunction with Enhanced Electron–Hole Separation for Highâ€Performance Hydrogen Evolution. Advanced Materials, 2019, 31, e1806596.	21.0	240
7	Strain energy and electronic structures of silicon carbide nanotubes: Density functional calculations. Physical Review B, 2005, 71, .	3.2	239
8	High Mobility and High Storage Capacity of Lithium in sp–sp ² Hybridized Carbon Network: The Case of Graphyne. Journal of Physical Chemistry C, 2011, 115, 8845-8850.	3.1	228
9	Tunable electronic structures of graphene/boron nitride heterobilayers. Applied Physics Letters, 2011, 98, .	3.3	211
10	Strain-driven band inversion and topological aspects in Antimonene. Scientific Reports, 2015, 5, 16108.	3.3	203
11	Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries. Journal of Materials Chemistry A, 2016, 4, 8905-8912.	10.3	188
12	A niobium and tantalum co-doped perovskite cathode for solid oxide fuel cells operating below 500 °C. Nature Communications, 2017, 8, 13990.	12.8	180
13	Sulfur and nitrogen self-doped carbon nanosheets derived from peanut root nodules as high-efficiency non-metal electrocatalyst for hydrogen evolution reaction. Nano Energy, 2015, 16, 357-366.	16.0	162
14	Spontaneous full photocatalytic water splitting on 2D MoSe ₂ /SnSe ₂ and WSe ₂ /SnSe ₂ vdW heterostructures. Nanoscale, 2019, 11, 14836-14843.	5.6	156
15	Stability and electronic structure of AlN nanotubes. Physical Review B, 2003, 68, .	3.2	148
16	An ab initio study on gas sensing properties of graphene and Si-doped graphene. European Physical Journal B, 2011, 81, 475-479.	1.5	143
17	Isoelectronic Doping of Graphdiyne with Boron and Nitrogen: Stable Configurations and Band Gap Modification. Journal of Physical Chemistry A, 2012, 116, 3934-3939.	2.5	142
18	Two-dimensional carbon topological insulators superior to graphene. Scientific Reports, 2013, 3, 3532.	3.3	140

#	Article	IF	CITATIONS
19	A Highly Active Perovskite Electrode for the Oxygen Reduction Reaction Below 600 °C. Angewandte Chemie - International Edition, 2013, 52, 14036-14040.	13.8	138
20	Tunable Hydrogen Separation in sp–sp ² Hybridized Carbon Membranes: A First-Principles Prediction. Journal of Physical Chemistry C, 2012, 116, 16634-16638.	3.1	135
21	Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Applied Surface Science, 2018, 455, 522-526.	6.1	134
22	Graphdiyne: A promising anode material for lithium ion batteries with high capacity and rate capability. Journal of Applied Physics, 2013, 113, .	2.5	131
23	High activity and durability of novel perovskite electrocatalysts for water oxidation. Materials Horizons, 2015, 2, 495-501.	12.2	128
24	Oneâ€Step Exfoliation and Fluorination of Boron Nitride Nanosheets and a Study of Their Magnetic Properties. Angewandte Chemie - International Edition, 2014, 53, 3645-3649.	13.8	127
25	Promotion of Overall Water Splitting Activity Over a Wide pH Range by Interfacial Electrical Effects of Metallic NiCoâ€nitrides Nanoparticle/NiCo ₂ O ₄ Nanoflake/graphite Fibers. Advanced Science, 2019, 6, 1801829.	11.2	122
26	Efficient helium separation of graphitic carbon nitride membrane. Carbon, 2015, 95, 51-57.	10.3	115
27	Novel Conductive Metal–Organic Framework for a High-Performance Lithium–Sulfur Battery Host: 2D Cu-Benzenehexathial (BHT). ACS Applied Materials & Interfaces, 2018, 10, 15012-15020.	8.0	105
28	Tunable Magnetism in Carbonâ€lonâ€lmplanted Highly Oriented Pyrolytic Graphite. Advanced Materials, 2008, 20, 4679-4683.	21.0	103
29	Effective hydrogen storage in single-wall carbon nanotubes. Physical Review B, 2001, 63, .	3.2	101
30	Conductive and Polar Titanium Boride as a Sulfur Host for Advanced Lithium–Sulfur Batteries. Chemistry of Materials, 2018, 30, 6969-6977.	6.7	101
31	Correlation between the vacancy defects and ferromagnetism in graphite. Carbon, 2009, 47, 1399-1406.	10.3	94
32	First-principles calculations for nitrogen-containing single-walled carbon nanotubes. Journal of Applied Physics, 2003, 94, 2398-2402.	2.5	93
33	Giant Topological Nontrivial Band Gaps in Chloridized Gallium Bismuthide. Nano Letters, 2015, 15, 1296-1301.	9.1	92
34	An unprecedented high-temperature-tolerance 2D laminar MXene membrane for ultrafast hydrogen sieving. Journal of Membrane Science, 2019, 569, 117-123.	8.2	87
35	Theoretical Discovery of a Superconducting Two-Dimensional Metal–Organic Framework. Nano Letters, 2017, 17, 6166-6170.	9.1	86
36	Half-metallicity of a kagome spin lattice: the case of a manganese bis-dithiolene monolayer. Nanoscale, 2013, 5, 10404.	5.6	84

#	Article	IF	CITATIONS
37	Two-dimensional topological insulators with binary honeycomb lattices: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Si</mml:mi><mml:msub><mml:mibiligraphene .<="" 2014,="" 89,="" analogs.="" and="" b,="" its="" physical="" review="" td=""><td>3.2</td><td>83</td></mml:mibiligraphene></mml:msub></mml:math>	3.2	83
38	Spin-polarization and ferromagnetism of graphitic carbon nitride materials. Journal of Materials Chemistry C, 2013, 1, 6265.	5. 5	82
39	First-principlesLDA+Ucalculations of the Co-dopedZnOmagnetic semiconductor. Physical Review B, 2006, 73, .	3.2	81
40	Topological insulator states in a honeycomb lattice of s-triazines. Nanoscale, 2014, 6, 11157-11162.	5.6	79
41	Structures, Energetics, and Electronic Properties of Multifarious Stacking Patterns for High-Buckled and Low-Buckled Silicene on the MoS ₂ Substrate. Journal of Physical Chemistry C, 2014, 118, 19129-19138.	3.1	76
42	Tuning of Interlayer Coupling in Large-Area Graphene/WSe ₂ van der Waals Heterostructure via Ion Irradiation: Optical Evidences and Photonic Applications. ACS Photonics, 2017, 4, 1531-1538.	6.6	75
43	Manipulating the electronic structures of silicon carbide nanotubes by selected hydrogenation. Journal of Chemical Physics, 2005, 122, 214707.	3.0	72
44	First-Principles Calculations of AlN Nanowires and Nanotubes:Â Atomic Structures, Energetics, and Surface States. Journal of Physical Chemistry B, 2006, 110, 8764-8768.	2.6	72
45	Spin-gapless semiconducting graphitic carbon nitrides: A theoretical design from first principles. Carbon, 2015, 84, 1-8.	10.3	72
46	Electron stopping power and mean free path in organic compounds over the energy range of 20–10,000 eV. Nuclear Instruments & Methods in Physics Research B, 2004, 222, 27-43.	1.4	71
47	First-principles study of hydrogenated graphyne and its family: Stable configurations and electronic structures. Diamond and Related Materials, 2012, 29, 42-47.	3.9	71
48	Diffusion and condensation of lithium atoms in single-walled carbon nanotubes. Physical Review B, 2005, 71, .	3.2	70
49	Prediction of a flexible anode material for Li/Na ion batteries: Phosphorous carbide monolayer (\hat{l} ±-PC). Carbon, 2019, 141, 444-450.	10.3	70
50	"Chemical Weathering―Exfoliation of Atomâ€Thick Transition Metal Dichalcogenides and Their Ultrafast Saturable Absorption Properties. Advanced Functional Materials, 2015, 25, 5292-5299.	14.9	69
51	Tunable C2N Membrane for High Efficient Water Desalination. Scientific Reports, 2016, 6, 29218.	3.3	67
52	Bifunctional HER/OER or OER/ORR Catalytic Activity of Two-Dimensional TM ₃ (HITP) ₂ with TM = Feâ€"Zn. Journal of Physical Chemistry C, 2020, 124, 9350-9359.	3.1	67
53	Diffusion and coalescence of vacancies and interstitials in graphite: A first-principles study. Diamond and Related Materials, 2010, 19, 1240-1244.	3.9	66
54	Ultra-high hydrogen storage capacity of Li-decorated graphyne: A first-principles prediction. Journal of Applied Physics, 2012, 112, .	2.5	64

#	Article	IF	Citations
55	Strain energy and thermal stability of single-walled aluminum nitride nanotubes from first-principles calculations. Chemical Physics Letters, 2004, 389, 160-164.	2.6	63
56	Prediction of an ultrasoft graphene allotrope with Dirac cones. Carbon, 2016, 105, 323-329.	10.3	62
57	Intrinsic multiferroicity in two-dimensional VOCl ₂ monolayers. Nanoscale, 2019, 11, 1103-1110.	5.6	62
58	Tight-binding model for the electronic structures of SiC and BN nanoribbons. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 440-445.	2.7	59
59	Covalent-adsorption induced magnetism in graphene. Journal of Materials Chemistry, 2009, 19, 9274.	6.7	58
60	Two-dimensional transition metal borides as highly efficient N2 fixation catalysts. Applied Surface Science, 2021, 536, 147742.	6.1	58
61	Metal-free highly efficient photocatalysts for overall water splitting: C ₃ N ₅ multilayers. Nanoscale, 2020, 12, 306-315.	5.6	57
62	Theoretical study of hydrogen atom adsorbed on carbon-doped BN nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 357, 369-373.	2.1	56
63	First-principles identifications of superstructures of germanene on $Ag(111)$ surface and h-BN substrate. Physical Chemistry Chemical Physics, 2013, 15, 16853.	2.8	56
64	Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. Advanced Science, 2022, 9, e2105252.	11,2	56
65	Silicon Monoxide Clusters: The Favorable Precursors for Forming Silicon Nanostructures. Physical Review Letters, 2004, 93, 095503.	7.8	55
66	Driving a GaAs film to a large-gap topological insulator by tensile strain. Scientific Reports, 2015, 5, 8441.	3.3	55
67	Theoretical Design of an InSe/GaTe vdW Heterobilayer: A Potential Visible-Light Photocatalyst for Water Splitting. Journal of Physical Chemistry C, 2018, 122, 27803-27810.	3.1	55
68	Design and energetic characterization of ZnO clusters from first-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 372, 39-43.	2.1	54
69	Highly-efficient overall water splitting in 2D Janus group-III chalcogenide multilayers: the roles of intrinsic electric filed and vacancy defects. Science Bulletin, 2020, 65, 27-34.	9.0	54
70	Inâ€situ Nanoâ€Crystallization and Solvation Modulation to Promote Highly Stable Anode Involving Alloy/Deâ€alloy for Potassium Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 15381-15389.	13.8	54
71	SiC coating: An alternative for the protection of nuclear graphite from liquid fluoride salt. Journal of Nuclear Materials, 2014, 448, 1-3.	2.7	53
72	Fluorination-induced magnetism in boron nitride nanotubes from ab initio calculations. Applied Physics Letters, 2008, 92, 102515.	3.3	52

#	Article	IF	CITATIONS
73	First-principles prediction of the transition from graphdiyne to a superlattice of carbon nanotubes and graphene nanoribbons. Carbon, 2013, 65, 341-348.	10.3	52
74	A comparative study of SrCo _{0.8} Nb _{0.2} O _{3â^δ} and SrCo _{0.8} Ta _{0.2} O _{3â^δ} as low-temperature solid oxide fuel cell cathodes: effect of non-geometry factors on the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 24064-24070.	10.3	52
75	Tungsten boride: a 2D multiple Dirac semimetal for the hydrogen evolution reaction. Journal of Materials Chemistry C, 2019, 7, 8868-8873.	5.5	52
76	Moiré superstructures of silicene on hexagonal boron nitride: A first-principles study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 2628-2632.	2.1	51
77	Negative Poisson's ratio and high-mobility transport anisotropy in SiC ₆ siligraphene. Nanoscale, 2018, 10, 2108-2114.	5.6	51
78	Direct Z-scheme photocatalytic overall water splitting on 2D CdS/InSe heterostructures. Journal Physics D: Applied Physics, 2018, 51, 395501.	2.8	51
79	pH-switchable nanozyme cascade catalysis: a strategy for spatial–temporal modulation of pathological wound microenvironment to rescue stalled healing in diabetic ulcer. Journal of Nanobiotechnology, 2022, 20, 12.	9.1	50
80	Spin-polarized Dirac cones and topological nontriviality in a metal–organic framework Ni∢sub>2C∢sub>24S∢sub>6H∢sub>12. Physical Chemistry Chemical Physics, 2016, 18, 8059-8064.	2.8	48
81	Manipulating Electrocatalytic Polysulfide Redox Kinetics by 1D Core–Shell Like Composite for Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	47
82	Distribution patterns and controllable transport of water inside and outside charged single-walled carbon nanotubes. Journal of Chemical Physics, 2005, 122, 084708.	3.0	46
83	Hybrid density functional study of band alignment in ZnO–GaN and ZnO–(Ga1−xZnx)(N1−xOx)–GaN heterostructures. Physical Chemistry Chemical Physics, 2012, 14, 15693.	2.8	46
84	Dirac node lines in two-dimensional Lieb lattices. Nanoscale, 2017, 9, 8740-8746.	5.6	46
85	Stable Multifunctional Single-Atom Catalysts Resulting from the Synergistic Effect of Anchored Transition-Metal Atoms and Host Covalent–Organic Frameworks. Journal of Physical Chemistry C, 2020, 124, 17675-17683.	3.1	46
86	Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes. Physical Review B, 2002, 66, .	3.2	45
87	Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure. Physical Review B, 2002, 65, .	3.2	45
88	Tensile strain induced half-metallicity in graphene-like carbon nitride. Physical Chemistry Chemical Physics, 2015, 17, 6028-6035.	2.8	45
89	Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation. Scientific Reports, 2016, 6, 19952.	3.3	45
90	Monolayer Fe ₃ GeX ₂ (X = S, Se, and Te) as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11845-11851.	8.0	45

#	Article	IF	Citations
91	Ferromagnetic ordering of silicon vacancies in N-doped silicon carbide. Applied Physics Letters, 2010, 96, .	3.3	44
92	Silicene and germanene on InSe substrates: structures and tunable electronic properties. Physical Chemistry Chemical Physics, 2018, 20, 11369-11377.	2.8	44
93	Stable ferromagnetism and half-metallicity in two-dimensional polyporphyrin frameworks. RSC Advances, 2013, 3, 7016.	3.6	43
94	Curvature-induced condensation of lithium confined inside single-walled carbon nanotubes: First-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 434-439.	2.1	42
95	Layered Titanium Oxide Nanosheet and Ultrathin Nanotubes: A First-Principles Prediction. Journal of Physical Chemistry C, 2009, 113, 13610-13615.	3.1	41
96	Metal-free Ternary BCN Nanosheets with Synergetic Effect of Band Gap Engineering and Magnetic Properties. Scientific Reports, 2017, 7, 6617.	3.3	41
97	Magnetic and optical properties of Cu-doped ZnO nanosheet: First-principles calculations. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 53, 101-105.	2.7	40
98	A metallic carbon allotrope with superhardness: a first-principles prediction. Journal of Materials Chemistry C, 2014, 2, 2751-2757.	5.5	40
99	Predicting a graphene-like WB4 nanosheet with a double Dirac cone, an ultra-high Fermi velocity and significant gap opening by spin–orbit coupling. Physical Chemistry Chemical Physics, 2017, 19, 5449-5453.	2.8	40
100	A promising alkali-metal ion battery anode material: 2D metallic phosphorus carbide (\hat{l}^2 0-PC). Electrochimica Acta, 2017, 258, 582-590.	5.2	40
101	Li-III-VI bilayers for efficient photocatalytic overall water splitting: the role of intrinsic electric field. Journal of Materials Chemistry A, 2019, 7, 26123-26130.	10.3	40
102	Strain-Modulated Electronic Structure and Infrared Light Adsorption in Palladium Diselenide Monolayer. Scientific Reports, 2017, 7, 39995.	3.3	39
103	Porous-hollow nanorods constructed from alternate intercalation of carbon and MoS2 monolayers for lithium and sodium storage. Nano Research, 2019, 12, 1912-1920.	10.4	39
104	Highly Efficient Photocatalytic CO ₂ Reduction in Two-Dimensional Ferroelectric CulnP ₂ S ₆ Bilayers. ACS Applied Materials & Interfaces, 2021, 13, 34486-34494.	8.0	39
105	Reversible out-of-plane spin texture in a two-dimensional ferroelectric material for persistent spin helix. Physical Review Materials, 2019, 3, .	2.4	39
106	OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells. Frontiers in Chemistry, 2021, 9, 753002.	3.6	39
107	Tunable topological states in electron-doped HTT-Pt. Physical Review B, 2016, 93, .	3.2	38
108	Two-dimensional graphyne-like carbon nitrides: Moderate band gaps, high carrier mobility, high flexibility and type-II band alignment. Carbon, 2019, 149, 234-241.	10.3	38

#	Article	IF	Citations
109	Theoretical Insight into Faceted ZnS Nanowires and Nanotubes from Interatomic Potential and First-Principles Calculations. Journal of Physical Chemistry C, 2008, 112, 3509-3514.	3.1	37
110	Valley-selective circular dichroism and high carrier mobility of graphene-like BC ₆ N. Nanoscale, 2018, 10, 13179-13186.	5.6	37
111	First-principles study of ZnS nanostructures: nanotubes, nanowires and nanosheets. Nanotechnology, 2008, 19, 305708.	2.6	36
112	Chemical Reactivity of Single-Walled Carbon Nanotubes to Amidogen from Density Functional Calculations. Journal of Physical Chemistry B, 2004, 108, 9599-9603.	2.6	35
113	Density-functional theory calculations of XH3-decorated SiC nanotubes (X={C,Si}): Structures, energetics, and electronic structures. Journal of Applied Physics, 2005, 97, 104311.	2.5	35
114	First-principles prediction of a new Dirac-fermion material: silicon germanide monolayer. Journal of Physics Condensed Matter, 2013, 25, 395501.	1.8	35
115	Low-energy transmission electron diffraction and imaging of large-area graphene. Science Advances, 2017, 3, e1603231.	10.3	35
116	Electronic properties of BN/C nanotube heterostructures. Journal of Applied Physics, 2010, 107, .	2.5	34
117	Dirac cones and highly anisotropic electronic structure of super-graphyne. Carbon, 2017, 113, 40-45.	10.3	34
118	Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modified graphdiyne. Science Bulletin, 2020, 65, 995-1002.	9.0	34
119	Regulating polysulfide intermediates by ultrathin Co-Bi nanosheet electrocatalyst in lithiumâ°'sulfur batteries. Nano Today, 2021, 40, 101246.	11.9	34
120	Ultrafine zirconium boride nanoparticles constructed bidirectional catalyst for ultrafast and long-lived lithium-sulfur batteries. Energy Storage Materials, 2022, 45, 130-141.	18.0	34
121	Plasma properties of a laser-ablated aluminum target in air. Laser and Particle Beams, 2003, 21, 97-101.	1.0	33
122	A scheme for the economical use of numerical basis sets in calculations with SIESTA. Theoretical Chemistry Accounts, 2004, 112, 158.	1.4	33
123	Faceted Silicon Nanotubes:  Structure, Energetic, and Passivation Effects. Journal of Physical Chemistry C, 2007, 111, 1234-1238.	3.1	32
124	Graphyne-based carbon allotropes with tunable properties: From Dirac fermion to semiconductor. Diamond and Related Materials, 2014, 41, 65-72.	3.9	32
125	High-efficiency helium separation through an inorganic graphenylene membrane: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 9789-9795.	2.8	32
126	Stable multifunctional single-atom catalysts adsorbed on pyrazine-modified graphyne. Applied Surface Science, 2021, 553, 149464.	6.1	32

#	Article	IF	CITATIONS
127	Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent–Organic Frameworks for Efficient Nitrogen Fixation. ACS Applied Materials & Interfaces, 2022, 14, 1024-1033.	8.0	32
128	Hydrogen storage capacity in single-walled carbon nanotubes. Physical Review B, 2002, 65, .	3.2	31
129	Proton stopping power in a group of bioorganic compounds over the energy range of 0.05–10MeV. Nuclear Instruments & Methods in Physics Research B, 2006, 248, 1-6.	1.4	31
130	Hydrogen saturation stabilizes vacancy-induced ferromagnetic ordering in graphene. Physical Chemistry Chemical Physics, 2010, 12, 13699.	2.8	31
131	Gas Adsorption Effects on the Electronic Properties of Two-Dimensional Nickel Bis(dithiolene) Complex. Journal of Physical Chemistry C, 2016, 120, 3846-3852.	3.1	31
132	Collision of hydrogen atom with single-walled carbon nanotube: Adsorption, insertion, and healing. Journal of Chemical Physics, 2001, 115, 8152-8156.	3.0	30
133	Theoretical study of the OH reaction with cytosine. Computational and Theoretical Chemistry, 2005, 723, 123-129.	1.5	30
134	Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx ($x=1,2$) groups. Journal of Chemical Physics, 2006, 125, 194710.	3.0	30
135	Manifold electronic structure transition of BNC biribbons. Journal of Applied Physics, 2011, 110, .	2.5	30
136	Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite. Carbon, 2014, 77, 311-318.	10.3	30
137	Large-Scale Synthesis of Few-Layer F-BN Nanocages with Zigzag-Edge Triangular Antidot Defects and Investigation of the Advanced Ferromagnetism. Nano Letters, 2015, 15, 8122-8128.	9.1	30
138	Chern Insulator and Chern Half-Metal States in the Two-Dimensional Spin-Gapless Semiconductor Mn ₂ C ₆ S ₁₂ . Journal of Physical Chemistry Letters, 2017, 8, 3770-3775.	4.6	30
139	Robust half-metallicity and topological aspects in two-dimensional Cu-TPyB. Scientific Reports, 2015, 5, 14098.	3.3	29
140	Cu ₃ N and its analogs: a new class of electrodes for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 8762-8768.	10.3	29
141	Orientational DNA binding and directed transport on nanomaterial heterojunctions. Nanoscale, 2020, 12, 5217-5226.	5.6	29
142	Cross sections of electron inelastic interactions in DNA. Radiation and Environmental Biophysics, 2004, 43, 173-182.	1.4	28
143	Stable and extendable cage containing nanosize silica clusters based on three-membered rings. Physical Review B, 2004, 69, .	3.2	28
144	Electron stopping power and inelastic mean free path in amino acids and protein over the energy range of 20–20,000ÂeV. Radiation and Environmental Biophysics, 2006, 45, 135-143.	1.4	28

#	Article	IF	Citations
145	Energetic Minimum Structures of Imogolite Nanotubes: A First-Principles Prediction. Journal of Physical Chemistry C, 2009, 113, 14834-14837.	3.1	28
146	Can cation vacancy defects induce room temperature ferromagnetism in GaN?. Applied Physics Letters, 2013, 102, 062411.	3.3	28
147	Study of the plasma produced from laser ablation of a KTP crystal. Applied Surface Science, 2003, 207, 227-235.	6.1	27
148	Orientation-Dependent Stability and Quantum-Confinement Effects of Silicon Carbide Nanowires. Journal of Physical Chemistry C, 2009, 113, 12731-12735.	3.1	27
149	A comparative first-principles study of the electronic, mechanical, defect and acoustic properties of Ti ₂ AlC and Ti ₃ AlC. Journal Physics D: Applied Physics, 2014, 47, 215301.	2.8	27
150	Photo-assisted high performance single atom electrocatalysis of the N ₂ reduction reaction by a Mo-embedded covalent organic framework. Journal of Materials Chemistry A, 2021, 9, 19949-19957.	10.3	27
151	Reactions of \hat{A} -OH with thymine studied using density functional theory. International Journal of Quantum Chemistry, 2005, 101, 211-218.	2.0	26
152	Neutral vacancy-defect-induced magnetism in SiC monolayer. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2451-2454.	2.7	26
153	Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating. Journal of Nuclear Materials, 2013, 442, 306-308.	2.7	26
154	Prediction of quantum anomalous Hall effect on graphene nanomesh. RSC Advances, 2015, 5, 9875-9880.	3.6	26
155	Band inversion and topological aspects in a TiNI monolayer. Physical Chemistry Chemical Physics, 2016, 18, 22154-22159.	2.8	26
156	Honeycomb-Patterned Quantum Dots beyond Graphene. Journal of Physical Chemistry C, 2011, 115, 17743-17749.	3.1	25
157	Spin-polarization of VGaON center in GaN and its application in spin qubit. Applied Physics Letters, 2012, 100, 192401.	3.3	25
158	Dumbbell stanane: a large-gap quantum spin hall insulator. Physical Chemistry Chemical Physics, 2015, 17, 16624-16629.	2.8	25
159	Kane Fermion in a Two-Dimensional π-Conjugated Bis(iminothiolato)nickel Monolayer. Journal of Physical Chemistry Letters, 2018, 9, 614-619.	4.6	25
160	Bi-atom active sites embedded in a two-dimensional covalent organic framework for efficient nitrogen reduction reaction. Applied Surface Science, 2021, 563, 150352.	6.1	25
161	Structures of hydrogen molecules in single-walled carbon nanotubes. Chemical Physics Letters, 2002, 357, 97-102.	2.6	24
162	Ab initio study of base-functionalized single walled carbon nanotubes. Chemical Physics Letters, 2005, 415, 183-187.	2.6	24

#	Article	IF	Citations
163	Lattice match and lattice mismatch models of graphene on hexagonal boron nitride from first principles. Journal of Physics Condensed Matter, 2014, 26, 095002.	1.8	24
164	Two-Dimensional Metal–Organic Half-metallic Antiferromagnet: CoFePz. Journal of Physical Chemistry C, 2018, 122, 1846-1851.	3.1	24
165	Two- and Three-Membered-Ring Hybrid Structures of Silica Nanoclusters. Journal of Physical Chemistry B, 2004, 108, 18451-18454.	2.6	23
166	Selectable functionalization of single-walled carbon nanotubes resulting fromCHn(n=1–3)adsorption. Physical Review B, 2004, 69, .	3.2	23
167	Ab Initio Calculations on the Magnetic Properties of Hydrogenated Boron Nitride Nanotubes. Journal of Physical Chemistry C, 2008, 112, 16231-16235.	3.1	23
168	Monte-Carlo simulation of low-energy electron scattering in PMMA $\hat{a}\in$ using stopping powers from dielectric formalism. Microelectronic Engineering, 2005, 77, 285-291.	2.4	22
169	Electronic properties of a π-conjugated Cairo pentagonal lattice: Direct band gap, ultrahigh carrier mobility, and slanted Dirac cones. Physical Review B, 2018, 98, .	3.2	22
170	Key residues of the receptor binding domain in the spike protein of SARS-CoV-2 mediating the interactions with ACE2: a molecular dynamics study. Nanoscale, 2021, 13, 9364-9370.	5.6	22
171	Structural characterization of fully coordinated ultrathin silica nanotubes by first-principles calculations. Physical Review B, 2006, 73, .	3.2	21
172	Three-dimensional diffusion of molecular hydrogen in graphdiyne: a first-principles study. Journal Physics D: Applied Physics, 2013, 46, 495307.	2.8	21
173	Spin memristive magnetic tunnel junctions with CoO-ZnO nano composite barrier. Scientific Reports, 2014, 4, 3835.	3.3	21
174	Efficient hydrogen isotopologues separation through a tunable potential barrier: The case of a C2N membrane. Scientific Reports, 2017, 7, 1483.	3.3	21
175	Construction and electrochemical mechanism investigation of hierarchical core—shell like composite as high performance anode for potassium ion batteries. Nano Research, 2021, 14, 3552-3561.	10.4	21
176	Condensation and phase transition of hydrogen molecules confined in single-walled carbon nanotubes. Physical Review B, 2003, 67, .	3.2	20
177	Theoretical models of ZnS nanoclusters and nanotubes: First-principles calculations. Solid State Communications, 2008, 147, 165-168.	1.9	20
178	Long-ranged and high temperature ferromagnetism in (Mn,C)-codoped ZnO studied by first-principles calculations. Journal of Applied Physics, 2010, 107, 033903.	2.5	20
179	Enhancement of hydrogen physisorption on single-walled carbon nanotubes resulting from defects created by carbon bombardment. Physical Review B, 2005, 71, .	3.2	19
180	Enhancing the ferromagnetization of graphite by successive 12C+ ion implantation steps. Carbon, 2011, 49, 1931-1938.	10.3	19

#	Article	IF	CITATIONS
181	Theoretical insights into the built-in electric field and band offsets of BN/C heterostructured zigzag nanotubes. Journal Physics D: Applied Physics, 2011, 44, 095405.	2.8	19
182	Is yne-diamond a super-hard material?. Europhysics Letters, 2012, 100, 56003.	2.0	19
183	Zr ₂ Si: an antiferromagnetic Dirac MXene. Physical Chemistry Chemical Physics, 2018, 20, 3946-3952.	2.8	19
184	Direct Z-scheme photocatalytic CO2 conversion to solar fuels in a two-dimensional C2N/aza-CMP heterostructure. Applied Surface Science, 2021, 541, 148630.	6.1	19
185	Orientation-selective unzipping of carbon nanotubes. Physical Chemistry Chemical Physics, 2010, 12, 13674.	2.8	18
186	Formation and annealing behaviors of qubit centers in 4H-SiC from first principles. Journal of Applied Physics, 2013, 114, .	2.5	18
187	Gallium bismuth halide GaBi-X2 (X = I, Br, Cl) monolayers with distorted hexagonal framework: Novel room-temperature quantum spin Hall insulators. Nano Research, 2017, 10, 2168-2180.	10.4	18
188	Tunable ferroelectricity and antiferromagnetism <i>via</i> ferroelastic switching in an FeOOH monolayer. Journal of Materials Chemistry C, 2020, 8, 13982-13989.	5 . 5	18
189	Multifunctional electrocatalytic activity of coronene-based two-dimensional metal-organic frameworks: TM-PTC. Applied Surface Science, 2020, 511, 145393.	6.1	18
190	Theoretical prediction for the (AlN) < sub>12 < /sub>fullerene-like cage-based nanomaterials. Journal of Physics Condensed Matter, 2007, 19, 346228.	1.8	17
191	The electronic structure of a single-walled aluminosilicate nanotube. Nanotechnology, 2008, 19, 175702.	2.6	17
192	First-Principles Study of Faceted Single-Crystalline Silicon Carbide Nanowires and Nanotubes. Journal of Physical Chemistry C, 2009, 113, 856-861.	3.1	17
193	First-Principles Study of Titania Nanoribbons: Formation, Energetics, and Electronic Properties. Journal of Physical Chemistry C, 2010, 114, 9234-9238.	3.1	17
194	Tuning the electronic and magnetic properties of triangular boron nitride quantum dots via carbon doping. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 49, 52-60.	2.7	17
195	Electron spin-polarization and spin lattices in the boron- and nitrogen-doped organic framework COF-5. Physical Chemistry Chemical Physics, 2014, 16, 23286-23291.	2.8	17
196	Strain-induced phase transition and electron spin-polarization in graphene spirals. Scientific Reports, 2015, 4, 5699.	3.3	17
197	Bifunctional Electrocatalytic Activity of Bis(iminothiolato)nickel Monolayer for Overall Water Splitting. Journal of Physical Chemistry C, 2019, 123, 25651-25656.	3.1	17
198	Ferroelectricity and multiferroicity in two-dimensional Sc ₂ P ₂ monolayers. Physical Chemistry Chemical Physics, 2020, 22, 7489-7496.	2.8	17

#	Article	IF	Citations
199	Concentration dependent magnetism induced by hydrogen adsorption on graphene and single walled carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2010, 322, 838-843.	2.3	16
200	Direct characterization of ion implanted pyrolytic carbon coatings deposited from natural gas. Carbon, 2014, 68, 95-103.	10.3	16
201	Effect of the alloying element titanium on the stability and trapping of hydrogen in pure vanadium: A first-principles study. International Journal of Modern Physics B, 2014, 28, 1450207.	2.0	16
202	Half-metallic TiF ₃ : a potential anode material for Li-ion spin batteries. Journal of Materials Chemistry A, 2017, 5, 21486-21490.	10.3	16
203	Tunable valley splitting and anomalous valley Hall effect in VTe ₂ /Ga ₂ S ₃ heterostructures. Journal of Materials Chemistry C, 2020, 8, 14895-14901.	5.5	16
204	Efficient isotropic water desalination in anisotropic lamellar nano-channels formed by layered black phosphorus membrane. Desalination, 2021, 504, 114962.	8.2	16
205	Stable tetrahedral structure of the silica cluster(SiO2)10. Physical Review B, 2004, 70, .	3.2	15
206	Temporal and spatial evolution of Si atoms in plasmas produced by a nanosecond laser ablating silicon carbide crystals. Physical Review E, 2009, 80, 016405.	2.1	15
207	First-principles prediction of the negatively-charged nitrogen-silicon-vacancy center in cubic silicon carbide. Journal of Applied Physics, 2010, 108, .	2.5	15
208	The roles of π electrons in the electronic structures and optical properties of graphyne. Science Bulletin, 2012, 57, 3080-3085.	1.7	15
209	The stability and electronic structure of Fe atoms embedded in zigzag graphene nanoribbons. Physica B: Condensed Matter, 2014, 441, 28-32.	2.7	15
210	Theoretical Design of Highly Efficient CO ₂ /N ₂ Separation Membranes Based on Electric Quadrupole Distinction. Journal of Physical Chemistry C, 2017, 121, 17925-17931.	3.1	15
211	Anisotropic protein diffusion on nanosurface. Nanoscale, 2020, 12, 5209-5216.	5.6	15
212	Giant negative Poisson's ratio in two-dimensional V-shaped materials. Nanoscale Advances, 2021, 3, 4554-4560.	4.6	15
213	Prediction of intrinsic topological superconductivity in Mn-doped GeTe monolayer from first-principles. Npj Computational Materials, 2021, 7, .	8.7	15
214	Two-Dimensional Conductive Metal–Organic Frameworks as Highly Efficient Electrocatalysts for Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 61205-61214.	8.0	15
215	Two-dimensional Dirac materials: Tight-binding lattice models and material candidates. ChemPhysMater, 2023, 2, 30-42.	2.8	15
216	Silver-filled single-walled carbon nanotubes: Atomic and electronic structures from first-principles calculations. Physical Review B, 2006, 74, .	3.2	14

#	Article	IF	CITATIONS
217	Role of lens to sample distance during laser-induced damage in zinc targets. Laser Physics Letters, 2012, 9, 730-733.	1.4	14
218	Intrinsic half-metallicity in fractal carbon nitride honeycomb lattices. Physical Chemistry Chemical Physics, 2015, 17, 21837-21844.	2.8	14
219	Prediction of crossing nodal-lines and large intrinsic spin Hall conductivity in topological Dirac semimetal Ta3As family. Npj Computational Materials, 2021, 7, .	8.7	14
220	Size-dependent structural and electronic properties of ZnS nanofilms: An ab initio study. Journal of Applied Physics, 2010, 108, 064317.	2.5	13
221	Possible origin of ferromagnetism in un-doped ZnO: First-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 638-641.	2.1	13
222	Irradiation-induced magnetic ordering in SiC: Experimental results and a density functional study. Applied Physics Letters, 2013, 103, 262409.	3.3	13
223	Electron spin-polarization and band gap engineering in carbon-modified graphitic carbon nitrides. Journal of Materials Chemistry C, 2015, 3, 10886-10891.	5.5	13
224	First-principles design of highly-efficient earth-abundant electrocatalysts for hydrogen evolution reaction: TiF3 and its analogs. Applied Surface Science, 2019, 495, 143623.	6.1	13
225	Tunable Valley Polarization in a Multiferroic CuCrP ₂ Te ₆ Monolayer. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000008.	2.4	13
226	Prediction of a ternary two-dimensional pentagonal Zn2C2P2 monolayer for photocatalytic water splitting with high carriers mobility. Applied Surface Science, 2020, 518, 146197.	6.1	13
227	Functionalization of silicon-doped single walled carbon nanotubes at the doping site: An ab initio study. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 358, 166-170.	2.1	12
228	From a fullerene-like cage (SiC)12 to novel silicon carbide nanowires: An ab initio study. Chemical Physics Letters, 2007, 442, 384-389.	2.6	12
229	First-principles study of Co-doped single-walled silicon nanotubes. Nanotechnology, 2008, 19, 205707.	2.6	12
230	A new calculation on the stopping power and mean free path for low energy electrons in toluene over energy range of 20–10 000 eV. Applied Radiation and Isotopes, 2009, 67, 625-629.	1.5	12
231	Natural charge spatial separation and quantum confinement of ZnO/GaN-core/shell nanowires. Journal of Applied Physics, 2010, 108, 123707.	2.5	12
232	High hydrogen storage capacity in calciumâ€decorated silicene nanostructures. Physica Status Solidi (B): Basic Research, 2015, 252, 2072-2078.	1.5	12
233	Hydrogenation-induced large-gap quantum-spin-Hall insulator states in a germanium–tin dumbbell structure. RSC Advances, 2015, 5, 72462-72468.	3.6	12
234	Tuning the electronic and magnetic properties of MoS2 nanotubes with vacancy defects. RSC Advances, 2019, 9, 17203-17210.	3.6	12

#	Article	IF	Citations
235	Multi-functional photocatalytic activity of transition-metal tetraaza[14]annulene frameworks. Journal of Materials Chemistry A, 2021, 9, 4221-4229.	10.3	12
236	Spontaneous DNA translocation through a van der Waals heterostructure nanopore for single-molecule detection. Nanoscale Advances, 2021, 3, 5941-5947.	4.6	12
237	Tunable broadband hyperbolic light dispersion in metal diborides. Optics Express, 2019, 27, 36911.	3.4	12
238	The role of sp-hybridized boron atoms in the highly efficient photocatalytic N ₂ reduction activity of boron-doped triphenylene–graphdiyne. Journal of Materials Chemistry A, 2021, 9, 26077-26085.	10.3	12
239	Collisions of deuterium and tritium atoms with single-wall carbon nanotube: adsorption, encapsulation, and healing. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 288, 207-213.	2.1	11
240	The effect of salt concentration on DNA conformation transition: a molecular-dynamics study. Journal of Molecular Modeling, 2006, 12, 249-254.	1.8	11
241	Electronic stopping power for proton in amino acids and protein in 0.05–10 MeV range. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 1938-1942.	1.4	11
242	Prediction of a large-gap quantum-spin-Hall insulator: Diamond-like GaBi bilayer. Nano Research, 2015, 8, 3823-3829.	10.4	11
243	PNTCDA: a promising versatile organic electrode material for alkali-metal ion batteries. Journal of Materials Chemistry A, 2018, 6, 24869-24876.	10.3	11
244	Strain-tunable CO \langle sub \rangle 2 \langle sub \rangle storage by black phosphorene and \hat{l}_{\pm} -PC from combined first principles and molecular dynamics studies. Physical Chemistry Chemical Physics, 2019, 21, 20107-20117.	2.8	11
245	Geometric and Electronic Structures of Hydrogen-Stabilized Silicon Nitride Nanosheets and Nanotubes. Journal of Physical Chemistry C, 2007, 111, 16840-16845.	3.1	10
246	First-Principles Design of Well-Ordered Silica Nanotubes from Silica Monolayers and Nanorings. Journal of Physical Chemistry C, 2007, 111, 9652-9657.	3.1	10
247	From pure C60 to silicon carbon fullerene-based nanotube: An ab initio study. Journal of Chemical Physics, 2008, 128, 154719.	3.0	10
248	Early-stage evolution of the plasma over KTiOPO_4 samples generated by high-intensity laser radiations. Optics Letters, 2009, 34, 2682.	3.3	10
249	Controllable spin-polarized electrical transport in wide-band-gap oxide ferromagnetic semiconductors. Journal of Applied Physics, 2010, 107, .	2.5	10
250	Zinc oxide micro-spheres with faceted surfaces produced by laser ablation of zinc targets. Journal of Applied Physics, 2012, 111, 103108.	2.5	10
251	Topological states in a two-dimensional metal alloy in Si surface: BiAg/Si(111)- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo> \tilde{A}—<td>:m&2<mn< td=""><td>nl:mo>4</td></mn<></td></mml:mo></mml:mrow></mml:math>	:m &2 <mn< td=""><td>nl:mo>4</td></mn<>	nl:m o >4
252	Promising half-metallicity in ductile NbF ₃ : a first-principles prediction. Physical Chemistry Chemical Physics, 2018, 20, 4781-4786.	2.8	10

#	Article	IF	Citations
253	Influence of annealing condition on photoluminescence characteristics of AlGaAs/GaAs multiple quantum well. Materials Letters, 2003, 57, 2932-2935.	2.6	9
254	Self-assembly of base-functionalized carbon nanotubes. Physical Review B, 2005, 72, .	3.2	9
255	Proton inelastic mean free path in a group of bioorganic compounds and water in 0.05–10 MeV range – Including higher-order corrections. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2337-2342.	1.4	9
256	First-principles characterization of an AlSiVC center in cubic silicon carbide. Journal of Applied Physics, 2011, 110, 033711.	2.5	9
257	Role of acetylenic bonds in the mechanical, electronic and optical properties of yne-diamonds. Diamond and Related Materials, 2013, 37, 55-63.	3.9	9
258	Spin-polarized zero-energy states in BN/C core–shell quantum dots. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1102-1108.	2.1	9
259	Manifold electronic structure transition of hybrid silicane–silicene nanoribbons. Chemical Physics Letters, 2014, 595-596, 20-24.	2.6	9
260	Gold atom and dimer adsorbed on perfect and defective graphene and boron nitride monolayer: A first-principles study. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 59, 235-242.	2.7	9
261	Kinetics of Nonlinear Optical Response at Insulator–Metal Transition in Vanadium Dioxide. Advanced Optical Materials, 2015, 3, 64-70.	7.3	9
262	Efficient ³ He/ ⁴ He separation in a nanoporous graphenylene membrane. Physical Chemistry Chemical Physics, 2017, 19, 21522-21526.	2.8	9
263	Tunable Dirac cones in two-dimensional covalent organic materials: C2N6S3 and its analogs. RSC Advances, 2017, 7, 52065-52070.	3.6	9
264	Hydrogen Confined in a Single Wall Carbon Nanotube Becomes a Metallic and Superconductive Nanowire under High Pressure. Nano Letters, 2019, 19, 2537-2542.	9.1	9
265	Interface-enhanced CO ₂ capture <i>via</i> the synthetic effects of a nanomaterial-supported ionic liquid thin film. Nanoscale Advances, 2021, 3, 1397-1403.	4.6	9
266	Hyperbolic dispersion and negative refraction in a metal-organic framework Cu-BHT. Physical Review Materials, $2019, 3, .$	2.4	9
267	Efficient anisotropic desalination by layer-stacked black phosphorus carbide (α-PC) membrane. Desalination, 2022, 522, 115422.	8.2	9
268	Robust broadband directional plasmons in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>MoO</mml:mi><mml:msub><mm .<="" 104,="" 2021,="" b,="" monolayer.="" physical="" review="" td=""><td>nl:n3i.2Cl<td>nnd:mi><mm< td=""></mm<></td></td></mm></mml:msub></mml:mrow></mml:math>	nl:n 3i.2 Cl <td>nnd:mi><mm< td=""></mm<></td>	nn d: mi> <mm< td=""></mm<>
269	Stabilizing Zigzag Single-Walled Silicon Nanotubes and Tailoring the Electronic Structures by Oxygen Atoms:  First-Principles Studies. Journal of Physical Chemistry C, 2007, 111, 2942-2946.	3.1	8
270	The dimension of the core and the tail of the plasma produced by laser ablating SiC targets. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5891-5895.	2.1	8

#	Article	IF	Citations
271	Tunable rectification and giant positive magnetoresistance in $Gel\hat{a}^{\prime\prime}xMnx/Ge$ epitaxial heterojunction diodes. Journal of Applied Physics, 2010, 107, .	2.5	8
272	Theoretical characterization of layered silica nanostructures from first-principles prediction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 3348-3353.	2.1	8
273	Energetics of carbon and nitrogen impurities and their interactions with vacancy in vanadium. Chinese Physics B, 2016, 25, 036104.	1.4	8
274	Transition-metal monochalcogenide nanowires: highly efficient bi-functional catalysts for the oxygen evolution/reduction reactions. Nanoscale, 2020, 12, 12883-12890.	5.6	8
275	Low-loss hyperbolic dispersion and anisotropic plasmonic excitation in nodal-line semimetallic yttrium nitride. Optics Express, 2020, 28, 22076.	3.4	8
276	Range distribution and electronic stopping powers for fluorine ions in -implanted potassium titanyl phosphate and LiNbO3. Nuclear Instruments & Methods in Physics Research B, 2001, 174, 1-8.	1.4	7
277	Ambient gas effects on high-power Nd:YAG laser ablation of SnO2:Sb transparent conducting thin film. Optics and Lasers in Engineering, 2004, 41, 537-544.	3.8	7
278	Surface structures and electronic states of silicon nanotubes stabilized by oxygen atoms. Journal of Applied Physics, 2007, 102, .	2.5	7
279	Effect of native defects and Co doping on ferromagnetism in HfO ₂ : Firstâ€principles calculations. Journal of Computational Chemistry, 2011, 32, 1298-1302.	3.3	7
280	Structural and electronic properties of ZnS/ZnO heteronanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 43, 1522-1527.	2.7	7
281	Irradiation resistance study of binderless nanopore-isotropic graphite for use in molten salt nuclear reactors. Nuclear Engineering and Design, 2018, 335, 231-240.	1.7	7
282	Valley polarization and ferroelectricity in a two-dimensional GaAsC ₆ monolayer. Physical Chemistry Chemical Physics, 2019, 21, 3954-3959.	2.8	7
283	Mild lipid extraction and anisotropic cell membrane penetration of $\hat{l}\pm$ -phase phosphorene carbide nanoribbons by molecular dynamics simulation studies. Physical Chemistry Chemical Physics, 2020, 22, 23268-23275.	2.8	7
284	Tuning the binding behaviors of a protein YAP65WW domain on graphenic nano-sheets with boron or nitrogen atom doping. Nanoscale Advances, 2020, 2, 4539-4546.	4.6	7
285	Understanding CO2 capture kinetics and energetics by ionic liquids with molecular dynamics simulation. RSC Advances, 2020, 10, 13968-13974.	3.6	7
286	Inâ€situ Nanoâ€Crystallization and Solvation Modulation to Promote Highly Stable Anode Involving Alloy/Deâ€alloy for Potassium Ion Batteries. Angewandte Chemie, 2021, 133, 15509-15517.	2.0	7
287	The mechanism of effect of lens-to-sample distance on laser-induced plasma. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 025203.	0.5	7
288	DFT calculation on the energy thresholds of DNA damages under irradiation conditions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 421-426.	2.1	6

#	Article	IF	CITATIONS
289	First-principles study of electronic structure and magnetic properties of Cu-doped CeO2. Journal of Applied Physics, 2012, 112, .	2.5	6
290	Strain-induced tunable negative differential resistance in triangle graphene spirals. Nanotechnology, 2018, 29, 205202.	2.6	6
291	Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice. Nanoscale Advances, 2021, 3, 1127-1135.	4.6	6
292	Defect-Induced Double-Stranded DNA Unwinding on Graphene. Journal of Physical Chemistry B, 2021, 125, 2833-2840.	2.6	6
293	Characterization of regular periodic surface structure by multi-pulse laser irradiation of a Zinc target. Chinese Optics Letters, 2012, 10, 051402-51404.	2.9	6
294	Self-assembly of ultra-small-sized carbon nanoparticles in lipid membrane disrupts its integrity. Nanoscale Advances, 2021, 4, 163-172.	4.6	6
295	Highly-anisotropic plasmons in two-dimensional hyperbolic copper borides. Optics Express, 2022, 30, 5596.	3.4	6
296	Photocatalytic hydrogen production and storage in carbon nanotubes: a first-principles study. RSC Advances, 2022, 12, 17029-17035.	3.6	6
297	Recombination and Exchange Reactions of Hydrogen and Dihydrogen Molecular Condensation in Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 4711-4715.	2.6	5
298	First-principles study of cobalt silicide nanosheet and nanotubes: Stability and electronic properties. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1795-1799.	2.7	5
299	Adsorption and diffusion of gold adatoms on boron nitride nanoribbons: A first-principles study. Journal of Applied Physics, 2012, 112, .	2.5	5
300	Silicon Carbide Nanocages and Nanotubes: Analogs of Carbon Fullerenes and Nanotubes or Not?. Journal of Computational and Theoretical Nanoscience, 2012, 9, 1999-2007.	0.4	5
301	Role of edge dehydrogenation in magnetization and spin transport of zigzag graphene nanoribbons with line defects. Organic Electronics, 2015, 27, 212-220.	2.6	5
302	Intrinsic current–voltage characteristics of metal-carbon nanotube networks: A first-principles study. Organic Electronics, 2016, 31, 278-286.	2.6	5
303	Dirac cones in a snub trihexagonal tiling lattice with reflective symmetry breaking. Journal of Physics Condensed Matter, 2019, 31, 155001.	1.8	5
304	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	5.1	5
305	Multiple Dirac cones and Lifshitz transition in a two-dimensional Cairo lattice as a Hawking evaporation analogue. Journal of Physics Condensed Matter, 2021, 33, 365001.	1.8	5
306	Low-energy interaction and adsorption of C60 on diamond surfaces. Nuclear Instruments & Methods in Physics Research B, 2000, 168, 169-180.	1.4	4

#	Article	IF	CITATIONS
307	Vacancy-defect–derived magnetism in titanium oxide nanosheet: A first-principles study. Europhysics Letters, 2010, 90, 66005.	2.0	4
308	Localized defects closely related with the magnetism of graphite induced by 12C+ ion implantation. Journal of Applied Physics, 2011, 109, 083933.	2.5	4
309	Investigating the ferromagnetic exchange interaction in Co-doped ZnO magnetic semiconductors. Scripta Materialia, 2011, 64, 864-867.	5.2	4
310	Enhancing superconductivity in bulk $\hat{l}^2\hat{a}^2$ Bi2Pd by negative pressure induced by quantum electronic stress. Physical Review B, 2019, 100, .	3.2	4
311	Computational studies on triphenyldiyne as a two-dimensional visible-light-driven photocatalyst for overall water splitting. Physical Chemistry Chemical Physics, 2020, 22, 20061-20068.	2.8	4
312	Spin-Gapless States in Two-Dimensional Molecular Ferromagnet Fe ₂ (TCNQ) ₂ . Journal of Physical Chemistry Letters, 2021, 12, 7921-7927.	4.6	4
313	Corrugation effect, Dirac cone splitting, and plasmon properties of biased twisted bilayer graphene. Physical Review B, 2021, 104, .	3.2	4
314	Floquet-engineered half-valley-metal state in two-dimensional gapped Dirac materials. Physical Review B, 2021, 104, .	3.2	4
315	Prediction of topological superconductivity from type-IV, -III, -II, and -I′ nodal points induced by Rashba spin-orbit coupling. Physical Review B, 2021, 104, .	3.2	4
316	Depth profiles and electronic stopping powers for fluorine ions in -implanted KTN. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 280, 58-64.	2.1	3
317	Electronic stopping powers for fluorine ions in 19F+-implanted tin-oxide films prepared by APCVD. Nuclear Instruments & Methods in Physics Research B, 2002, 187, 431-436.	1.4	3
318	Theoretical study of the \hat{A} · H reaction with cytosine. International Journal of Quantum Chemistry, 2007, 107, 240-246.	2.0	3
319	Theoretical Models of Silica Nanorings: First-Principles Calculations. Journal of Physical Chemistry C, 2008, 112, 17071-17075.	3.1	3
320	Analysis of plasma profile over KTiOAsO4 surface produced by 532 and 1064 nm laser radiations. Journal of Applied Physics, 2008, 104, .	2.5	3
321	Atomic-scale characterization of silicon diffusion on carbon nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 43, 610-613.	2.7	3
322	Proton inelastic mean free path in amino acids and protein over the energy range of 0.05–10 MeV. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2606-2610.	1.4	3
323	Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes. Chinese Physics Letters, 2010, 27, 086105.	3.3	3
324	Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment. Journal of Applied Physics, 2014, 116, 043711.	2.5	3

#	Article	IF	CITATIONS
325	Undamped plasmon modes and enhanced superconductivity in metal diborides. New Journal of Physics, 2021, 23, 073036.	2.9	3
326	New Spiral Form of Carbon Nitride with Ultrasoftness and Tunable Electronic Structures. ACS Omega, 2021, 6, 516-522.	3.5	3
327	Two-Dimensional Multiferroic δ-PbO Monolayer with a Large In-Plane Negative Poisson's Ratio. ACS Applied Electronic Materials, 0, , .	4.3	3
328	The importance of electronic exchange-correlation in non-self-consistent frozen density approximation. Chemical Physics Letters, 2002, 360, 436-442.	2.6	2
329	Emission properties of laser ablation of SnO2: Sb transparent conducting film and KTiOPO4 crystal. Optics and Laser Technology, 2003, 35, 475-480.	4.6	2
330	The electronic structure evolution of DNA during its conformation transition process. Physical Chemistry Chemical Physics, 2008, 10, 5077.	2.8	2
331	Rhodium atoms confined in boron nitride nanotubes: Density functional calculations. Europhysics Letters, 2010, 90, 47003.	2.0	2
332	Special structures and properties of hydrogen nanowire confined in a single walled carbon nanotube at extreme high pressure. AIP Advances, 2012, 2, 022161.	1.3	2
333	Unusual electronic and mechanical properties of sodium chlorides at high pressures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 1556-1561.	2.1	2
334	Floquet–Dirac fermions in monolayer graphene by Wannier functions. Journal of Physics Condensed Matter, 2021, 33, 145701.	1.8	2
335	Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices. Chinese Physics Letters, 2020, 37, 127102.	3.3	2
336	Efficient Helium and Helium Isotopes Separation by Phosphorus Carbide P $2\ C$ 3 Membrane. Advanced Theory and Simulations, 0 , , 2100327 .	2.8	2
337	Two-dimensional XC \langle sub \rangle 6 \langle sub \rangle -enes (X = Ge, Sn, Pb) with moderate band gaps, biaxial negative Poisson's ratios, and high carrier mobility. Physical Chemistry Chemical Physics, 2021, 23, 26468-26475.	2.8	2
338	Structural and energetic features of the dimerization of the main proteinase of SARS-CoV-2 using molecular dynamic simulations. Physical Chemistry Chemical Physics, 2022, 24, 4324-4333.	2.8	2
339	Chemical adsorption of C60 on diamond (100)($2\tilde{A}$ –1) surfaces. Applied Physics A: Materials Science and Processing, 2001, 73, 365-369.	2.3	1
340	Electronic stopping powers for fluorine ions in -implanted potassium titanyl arsenate. Applied Surface Science, 2004, 228, 77-83.	6.1	1
341	Monte Carlo simulation of interactions between energetic electron and cellulose film. Applied Surface Science, 2005, 246, 117-125.	6.1	1
342	An investigation of distribution parameters for fluorine ion implantation in indium-tin-oxide films. Applied Physics A: Materials Science and Processing, 2005, 81, 635-638.	2.3	1

#	Article	IF	CITATIONS
343	First-principles identification of two- and four-membered-ring hybrid structures of silica nanorings. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 4376-4380.	2.1	1
344	Proton Inelastic Mean Free Path in a Group of Organic Materials in 0.05–10 MeV Range. Chinese Physics Letters, 2010, 27, 113403.	3.3	1
345	Effects of substrate temperature upon optical properties of ZnTe epilayers grown on (100) GaAs substrates by MOVPE. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2041-2044.	1.8	1
346	Self-Organized Micro-Columns and Nano-Spheres Generated by Pulsed Laser Ablation of Ti/Al Alloy in Water. Chinese Physics Letters, 2014, 31, 015202.	3.3	1
347	Half-metallicity of C/BN hybrid nanoribbons containing a topological defective interface. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 224-228.	2.7	1
348	Serendipity of a topological nontrivial band gap in the 2D borophene subunit lattice with broken mirror symmetry. Physical Chemistry Chemical Physics, 2019, 21, 22526-22530.	2.8	1
349	Frontispiece: Inâ€situ Nanoâ€Crystallization and Solvation Modulation to Promote Highly Stable Anode Involving Alloy/Deâ€alloy for Potassium Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
350	Laser-driven anisotropic and nonlinear Rashba spin splitting in GaAs monolayer. Physical Review B, 2021, 104, .	3.2	1
351	Efficient Helium Separation with Two-Dimensional Metal–Organic Framework Fe/Ni-PTC: A Theoretical Study. Membranes, 2021, 11, 927.	3.0	1
352	Ferromagnetic coupling in a two-dimensional Cairo pentagonal Ni2(TCNQ)2 lattice. Journal of Materiomics, 2022, 8, 627-632.	5.7	1
353	Tunable topological electronic states in the Honeycomb-kagome lattices of nitrogen/oxygen-doped graphene nanomeshes. Nanoscale Advances, 0, , .	4.6	1
354	Sub-nanometer-sized carbon nanoparticle shows higher biocompatibility to DNA than nanometer-sized nanoparticles. Journal Physics D: Applied Physics, 2022, 55, 295401.	2.8	1
355	Strain-tunable self-passivated porous phosphorene for high-efficiency helium separation. Journal Physics D: Applied Physics, 2022, 55, 315501.	2.8	1
356	Electronic stopping powers of molybdenum metal for 19F ions at low velocity. Nuclear Instruments & Methods in Physics Research B, 2002, 197, 17-21.	1.4	0
357	An investigation of range distribution parameters for bismuth ion-implantation in silver gallium disulphur. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 96, 65-68.	3.5	0
358	Investigation of intermixing induced by sputtering and annealing in multiple quantum well. Applied Surface Science, 2003, 205, 182-187.	6.1	0
359	Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption. Chinese Physics Letters, 2010, 27, 097101.	3.3	0
360	Stacking dependent electronic properties of the nanofilms composing of super-aligned single-walled carbon nanotubes. Journal Physics D: Applied Physics, 2015, 48, 215307.	2.8	0

#	Article	IF	CITATIONS
361	Electron spin-polarization and spin-gapless states in an oxidized carbon nitride monolayer. RSC Advances, 2016, 6, 108280-108285.	3.6	0
362	Defect effects and electronic structure regulation in low-dimensional materials. Chinese Science Bulletin, 2021, 66, 1998-2009.	0.7	0
363	Frontispiz: Inâ€situ Nanoâ€Crystallization and Solvation Modulation to Promote Highly Stable Anode Involving Alloy/Deâ€alloy for Potassium Ion Batteries. Angewandte Chemie, 2021, 133, .	2.0	0