List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6024656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414, 799-806.	13.7	4,324
2	Identification and Importance of Brown Adipose Tissue in Adult Humans. New England Journal of Medicine, 2009, 360, 1509-1517.	13.9	3,690
3	Critical nodes in signalling pathways: insights into insulin action. Nature Reviews Molecular Cell Biology, 2006, 7, 85-96.	16.1	2,299
4	Role of Brain Insulin Receptor in Control of Body Weight and Reproduction. Science, 2000, 289, 2122-2125.	6.0	1,993
5	Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role ofPGC1andNRF1. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8466-8471.	3.3	1,800
6	Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001, 413, 131-138.	13.7	1,640
7	Suppression of Aging in Mice by the Hormone Klotho. Science, 2005, 309, 1829-1833.	6.0	1,634
8	Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature, 1991, 352, 73-77.	13.7	1,516
9	SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464, 121-125.	13.7	1,388
10	Antioxidants prevent health-promoting effects of physical exercise in humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8665-8670.	3.3	1,315
11	Type 2 diabetes mellitus. Nature Reviews Disease Primers, 2015, 1, 15019.	18.1	1,308
12	Developmental Origin of Fat: Tracking Obesity to Its Source. Cell, 2007, 131, 242-256.	13.5	1,242
13	Extended Longevity in Mice Lacking the Insulin Receptor in Adipose Tissue. Science, 2003, 299, 572-574.	6.0	1,198
14	Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature, 1994, 372, 186-190.	13.7	1,195
15	Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science, 1982, 215, 185-187.	6.0	1,136
16	Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature, 2017, 542, 450-455.	13.7	1,107
17	Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet, The, 1992, 340, 925-929.	6.3	1,093
18	Tissue-Specific Knockout of the Insulin Receptor in Pancreatic Î ² Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes. Cell, 1999, 96, 329-339.	13.5	1,093

#	Article	IF	CITATIONS
19	The Syndromes of Insulin Resistance and Acanthosis Nigricans. New England Journal of Medicine, 1976, 294, 739-745.	13.9	1,088
20	A Muscle-Specific Insulin Receptor Knockout Exhibits Features of the Metabolic Syndrome of NIDDM without Altering Glucose Tolerance. Molecular Cell, 1998, 2, 559-569.	4.5	1,071
21	Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harbor Perspectives in Biology, 2014, 6, a009191-a009191.	2.3	1,058
22	New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 2008, 454, 1000-1004.	13.7	964
23	Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. Journal of Clinical Investigation, 2000, 105, 311-320.	3.9	953
24	Slow Glucose Removal Rate and Hyperinsulinemia Precede the Development of Type II Diabetes in the Offspring of Diabetic Parents. Annals of Internal Medicine, 1990, 113, 909.	2.0	890
25	Insulin Action, Diabetogenes, and the Cause of Type II Diabetes. Diabetes, 1994, 43, 1066-1085.	0.3	865
26	Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nature Medicine, 2015, 21, 815-819.	15.2	824
27	ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Medicine, 2002, 8, 459-465.	15.2	796
28	The changing natural history of nephropathy in type I Diabetes. American Journal of Medicine, 1985, 78, 785-794.	0.6	795
29	Phlorizin: a review. Diabetes/Metabolism Research and Reviews, 2005, 21, 31-38.	1.7	772
30	Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A necessary distinction. Metabolism: Clinical and Experimental, 1978, 27, 1893-1902.	1.5	746
31	Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. Journal of Clinical Investigation, 1999, 103, 931-943.	3.9	721
32	Adipose Tissue Selective Insulin Receptor Knockout Protects against Obesity and Obesity-Related Glucose Intolerance. Developmental Cell, 2002, 3, 25-38.	3.1	719
33	SIRT3 Deficiency and Mitochondrial Protein Hyperacetylation Accelerate the Development of the Metabolic Syndrome. Molecular Cell, 2011, 44, 177-190.	4.5	691
34	Insulin stimulates tyrosine phosphorylation of the insulin receptor in a cell-free system. Nature, 1982, 298, 667-669.	13.7	684
35	Insulin Action and the Insulin Signaling Network*. Endocrine Reviews, 1995, 16, 117-142.	8.9	664
36	Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature, 1985, 318, 183-186.	13.7	661

#	Article	IF	CITATIONS
37	A guide to analysis of mouse energy metabolism. Nature Methods, 2012, 9, 57-63.	9.0	655
38	FROM MICE TO MEN: Insights into the Insulin Resistance Syndromes. Annual Review of Physiology, 2006, 68, 123-158.	5.6	626
39	Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance. Nature Medicine, 2000, 6, 924-928.	15.2	624
40	Magnitude and determinants of coronary artery disease in juvenile-onset, insulin-dependent diabetes mellitus. American Journal of Cardiology, 1987, 59, 750-755.	0.7	620
41	Beneficial Effects of Subcutaneous Fat Transplantation on Metabolism. Cell Metabolism, 2008, 7, 410-420.	7.2	602
42	Membrane receptors for hormones and neurotransmitters Journal of Cell Biology, 1976, 70, 261-286.	2.3	598
43	Suppressor of Cytokine Signaling 1 (SOCS-1) and SOCS-3 Cause Insulin Resistance through Inhibition of Tyrosine Phosphorylation of Insulin Receptor Substrate Proteins by Discrete Mechanisms. Molecular and Cellular Biology, 2004, 24, 5434-5446.	1.1	582
44	Insulin Action in AgRP-Expressing Neurons Is Required for Suppression of Hepatic Glucose Production. Cell Metabolism, 2007, 5, 438-449.	7.2	579
45	Role for neuronal insulin resistance in neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3100-3105.	3.3	563
46	Regulation of Myocardial Contractility and Cell Size by Distinct PI3K-PTEN Signaling Pathways. Cell, 2002, 110, 737-749.	13.5	545
47	Evidence for a role of developmental genes in the origin of obesity and body fat distribution. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 6676-6681.	3.3	543
48	Obesity Associated with a Mutation in a Genetic Regulator of Adipocyte Differentiation. New England Journal of Medicine, 1998, 339, 953-959.	13.9	531
49	Development of a Novel Polygenic Model of NIDDM in Mice Heterozygous for IR and IRS-1 Null Alleles. Cell, 1997, 88, 561-572.	13.5	517
50	Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease. Cell Metabolism, 2019, 30, 656-673.	7.2	511
51	Cellular bioenergetics as a target for obesity therapy. Nature Reviews Drug Discovery, 2010, 9, 465-482.	21.5	501
52	Insulin Action in Brain Regulates Systemic Metabolism and Brain Function. Diabetes, 2014, 63, 2232-2243.	0.3	472
53	Loss of ARNT/HIF1Î ² Mediates Altered Gene Expression and Pancreatic-Islet Dysfunction in Human Type 2 Diabetes. Cell, 2005, 122, 337-349.	13.5	460
54	Role of Dietary Fructose and Hepatic De Novo Lipogenesis in Fatty Liver Disease. Digestive Diseases and Sciences, 2016, 61, 1282-1293.	1.1	456

#	Article	IF	CITATIONS
55	Antibodies that impair insulin receptor binding in an unusual diabetic syndrome with severe insulin resistance. Science, 1975, 190, 63-65.	6.0	450
56	Bidirectional modulation of insulin action by amino acids Journal of Clinical Investigation, 1998, 101, 1519-1529.	3.9	442
57	Interactions between Gut Microbiota, Host Genetics and Diet Modulate the Predisposition to Obesity and Metabolic Syndrome. Cell Metabolism, 2015, 22, 516-530.	7.2	433
58	SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation/Deacetylation. Cell Metabolism, 2007, 6, 105-114.	7.2	429
59	Platform-independent and Label-free Quantitation of Proteomic Data Using MS1 Extracted Ion Chromatograms in Skyline. Molecular and Cellular Proteomics, 2012, 11, 202-214.	2.5	428
60	Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. Journal of Clinical Investigation, 2000, 105, 199-205.	3.9	419
61	Tumstatin, an Endothelial Cell-Specific Inhibitor of Protein Synthesis. Science, 2002, 295, 140-143.	6.0	416
62	The Molecular Mechanism of Insulin Action. Annual Review of Medicine, 1985, 36, 429-451.	5.0	415
63	Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6601-6606.	3.3	414
64	Epidemiologic Approach to the Etiology of Type I Diabetes Mellitus and Its Complications. New England Journal of Medicine, 1987, 317, 1390-1398.	13.9	407
65	Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14608-14613.	3.3	403
66	Fluctuations in the affinity and concentration of insulin receptors on circulating monocytes of obese patients: effects of starvation, refeeding, and dieting Journal of Clinical Investigation, 1976, 58, 1123-1135.	3.9	401
67	Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta Journal of Clinical Investigation, 1985, 75, 1028-1036.	3.9	394
68	Dilated cardiomyopathy and atrioventricular conduction blocks induced by heart-specific inactivation of mitochondrial DNA gene expression. Nature Genetics, 1999, 21, 133-137.	9.4	393
69	Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk Journal of Clinical Investigation, 1997, 100, 2158-2169.	3.9	392
70	Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. Journal of Clinical Investigation, 2019, 129, 3990-4000.	3.9	389
71	Insulin-Receptor Interaction in the Obese-Hyperglycemic Mouse. Journal of Biological Chemistry, 1973, 248, 244-250.	1.6	388
72	Hepatic Insulin Resistance Is Sufficient to Produce Dyslipidemia and Susceptibility to Atherosclerosis. Cell Metabolism, 2008, 7, 125-134.	7.2	383

#	Article	IF	CITATIONS
73	Mutation of the insulin receptor at tyrosine 960 inhibits signal transmission but does not affect its tyrosine kinase activity. Cell, 1988, 54, 641-649.	13.5	382
74	Astrocytic Insulin Signaling Couples Brain Glucose Uptake with Nutrient Availability. Cell, 2016, 166, 867-880.	13.5	382
75	Targeted Deletion of AIF Decreases Mitochondrial Oxidative Phosphorylation and Protects from Obesity and Diabetes. Cell, 2007, 131, 476-491.	13.5	381
76	The insulin receptor and the molecular mechanism of insulin action Journal of Clinical Investigation, 1988, 82, 1151-1156.	3.9	380
77	Insulin Interactions with Liver Plasma Membranes. Journal of Biological Chemistry, 1972, 247, 3953-3961.	1.6	379
78	Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proceedings of the National Academy of Sciences of the United States of America, 1978, 75, 4209-4213.	3.3	378
79	Insulin Signaling to the Glomerular Podocyte Is Critical for Normal Kidney Function. Cell Metabolism, 2010, 12, 329-340.	7.2	376
80	Impaired Insulin/IGF1 Signaling Extends Life Span by Promoting Mitochondrial L-Proline Catabolism to Induce a Transient ROS Signal. Cell Metabolism, 2012, 15, 451-465.	7.2	367
81	Muscle-specific PPARÎ ³ -deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. Journal of Clinical Investigation, 2003, 112, 608-618.	3.9	366
82	Cross-talk between the insulin and angiotensin signaling systems Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 12490-12495.	3.3	363
83	Differences in Risk of Insulin-Dependent Diabetes in Offspring of Diabetic Mothers and Diabetic Fathers. New England Journal of Medicine, 1984, 311, 149-152.	13.9	353
84	Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10422-10427.	3.3	350
85	Quantitative Aspects of the Insulin-Receptor Interaction in Liver Plasma Membranes. Journal of Biological Chemistry, 1974, 249, 2249-2257.	1.6	346
86	β-cell–specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nature Genetics, 2002, 31, 111-115.	9.4	345
87	Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochemical Journal, 2011, 433, 505-514.	1.7	339
88	Direct Demonstration of Separate Receptors for Growth and Metabolic Activities of Insulin and Multiplication-stimulating Activity (an Insulinlike Growth Factor) Using Antibodies to the Insulin Receptor. Journal of Clinical Investigation, 1980, 66, 130-140.	3.9	337
89	Sex and Depot Differences in Adipocyte Insulin Sensitivity and Glucose Metabolism. Diabetes, 2009, 58, 803-812.	0.3	331
90	Tyrosine-specific protein kinase activity is associated with the purified insulin receptor Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 2137-2141.	3.3	329

#	Article	IF	CITATIONS
91	Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the United States of America, 2015, 112, 3463-3468.	3.3	314
92	Endocrine regulation of ageing. Nature Reviews Molecular Cell Biology, 2007, 8, 681-691.	16.1	310
93	Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Medicine, 2012, 18, 388-395.	15.2	310
94	Brown fat as a therapy for obesity and diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 143-149.	1.2	309
95	MicroRNA sequence codes for small extracellular vesicle release and cellular retention. Nature, 2022, 601, 446-451.	13.7	300
96	Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. Journal of Clinical Investigation, 2002, 109, 629-639.	3.9	297
97	Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats Journal of Clinical Investigation, 1993, 92, 2065-2072.	3.9	293
98	The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. Journal of Clinical Investigation, 2003, 111, 1373-1380.	3.9	290
99	Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. Journal of Clinical Investigation, 2000, 105, 1791-1797.	3.9	283
100	Tissue–Specific Insulin Signaling, Metabolic Syndrome, and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2052-2059.	1.1	281
101	Lessons on Conditional Gene Targeting in Mouse Adipose Tissue. Diabetes, 2013, 62, 864-874.	0.3	281
102	Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3-kinase p851±. Nature Genetics, 2000, 26, 379-382.	9.4	273
103	The Cellular Fate of Glucose and Its Relevance in Type 2 Diabetes. Endocrine Reviews, 2004, 25, 807-830.	8.9	273
104	Mir193b–365 is essential for brown fat differentiation. Nature Cell Biology, 2011, 13, 958-965.	4.6	273
105	The Emerging Genetic Architecture of Type 2 Diabetes. Cell Metabolism, 2008, 8, 186-200.	7.2	271
106	Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nature Reviews Endocrinology, 2010, 6, 195-213.	4.3	268
107	Loss of Insulin Signaling in Vascular Endothelial Cells Accelerates Atherosclerosis in Apolipoprotein E Null Mice. Cell Metabolism, 2010, 11, 379-389.	7.2	267
108	Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10001-10005.	3.3	264

#	Article	IF	CITATIONS
109	Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage. Journal of Clinical Investigation, 2005, 115, 3554-3563.	3.9	263
110	Role of hepatic STAT3 in brain-insulin action on hepatic glucose production. Cell Metabolism, 2006, 3, 267-275.	7.2	261
111	Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nature Medicine, 2008, 14, 778-782.	15.2	260
112	Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 2366-2371.	3.3	256
113	Alterations in Insulin Binding Induced by Changes in Vivo in the Levels of Glucocorticoids and Growth Hormone*. Endocrinology, 1978, 103, 1054-1066.	1.4	254
114	Molecular Balance between the Regulatory and Catalytic Subunits of Phosphoinositide 3-Kinase Regulates Cell Signaling and Survival. Molecular and Cellular Biology, 2002, 22, 965-977.	1.1	254
115	Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2451-2456.	3.3	250
116	Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and PKCλ/ζ. Cell Metabolism, 2006, 3, 343-353.	7.2	249
117	Insulin Receptor Deficiency in Genetic and Acquired Obesity. Journal of Clinical Investigation, 1975, 56, 769-780.	3.9	248
118	Intrinsic Differences in Adipocyte Precursor Cells From Different White Fat Depots. Diabetes, 2012, 61, 1691-1699.	0.3	247
119	Altered function of insulin receptor substrate-1–deficient mouse islets and cultured β-cell lines. Journal of Clinical Investigation, 1999, 104, R69-R75.	3.9	246
120	Total insulin and IGF-I resistance in pancreatic β cells causes overt diabetes. Nature Genetics, 2006, 38, 583-588.	9.4	239
121	Effects of Autoantibodies to the Insulin Receptor on Isolated Adipocytes. Journal of Clinical Investigation, 1977, 60, 1094-1106.	3.9	239
122	Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. Journal of Clinical Investigation, 2005, 115, 718-727.	3.9	237
123	Genetic Determinants of Energy Expenditure and Insulin Resistance in Diet-Induced Obesity in Mice. Diabetes, 2004, 53, 3274-3285.	0.3	236
124	PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. Journal of Clinical Investigation, 2004, 114, 828-836.	3.9	236
125	Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation. Diabetes, 2013, 62, 3404-3417.	0.3	234
126	Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. Journal of Clinical Investigation, 2017, 127, 4059-4074.	3.9	233

#	Article	IF	CITATIONS
127	Role of MicroRNA Processing in Adipose Tissue in Stress Defense and Longevity. Cell Metabolism, 2012, 16, 336-347.	7.2	229
128	Increased insulin sensitivity in mice lacking p85Â subunit of phosphoinositide 3-kinase. Proceedings of the United States of America, 2002, 99, 419-424.	3.3	228
129	Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10791-10798.	3.3	223
130	Central insulin action regulates peripheral glucose and fat metabolism in mice. Journal of Clinical Investigation, 2008, 118, 2132-47.	3.9	223
131	Dietary Leucine - An Environmental Modifier of Insulin Resistance Acting on Multiple Levels of Metabolism. PLoS ONE, 2011, 6, e21187.	1.1	222
132	β3-Adrenergic Stimulation Differentially Inhibits Insulin Signaling and Decreases Insulin-induced Glucose Uptake in Brown Adipocytes. Journal of Biological Chemistry, 1999, 274, 34795-34802.	1.6	220
133	Insulin Receptor Knockout Mice. Annual Review of Physiology, 2003, 65, 313-332.	5.6	220
134	Effects of Diet and Genetic Background on Sterol Regulatory Element-Binding Protein-1c, Stearoyl-CoA Desaturase 1, and the Development of the Metabolic Syndrome. Diabetes, 2005, 54, 1314-1323.	0.3	216
135	Mouse Models of Insulin Resistance. Physiological Reviews, 2004, 84, 623-647.	13.1	211
136	Muscle-Specific Pten Deletion Protects against Insulin Resistance and Diabetes. Molecular and Cellular Biology, 2005, 25, 1135-1145.	1.1	211
137	GENETICS OF NON-INSULIN-DEPENDENT (TYPE-II) DIABETES MELLITUS. Annual Review of Medicine, 1996, 47, 509-531.	5.0	208
138	Adipose-Specific Deletion of TFAM Increases Mitochondrial Oxidation and Protects Mice against Obesity and Insulin Resistance. Cell Metabolism, 2012, 16, 765-776.	7.2	206
139	Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nature Cell Biology, 2005, 7, 601-611.	4.6	202
140	4PS/Insulin Receptor Substrate (IRS)-2 Is the Alternative Substrate of the Insulin Receptor in IRS-1-deficient Mice. Journal of Biological Chemistry, 1995, 270, 24670-24673.	1.6	201
141	Tissue-specific Ablation of the GLUT4 Glucose Transporter or the Insulin Receptor Challenges Assumptions about Insulin Action and Glucose Homeostasis. Journal of Biological Chemistry, 2003, 278, 33609-33612.	1.6	201
142	Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation, 2014, 124, 515-527.	3.9	201
143	Akt Signaling Mediates Postnatal Heart Growth in Response to Insulin and Nutritional Status. Journal of Biological Chemistry, 2002, 277, 37670-37677.	1.6	197
144	Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. Journal of Clinical Investigation, 2002, 109, 629-639.	3.9	194

#	Article	IF	CITATIONS
145	Excessive cardiac insulin signaling exacerbates systolic dysfunction induced by pressure overload in rodents. Journal of Clinical Investigation, 2010, 120, 1506-1514.	3.9	192
146	Exercise modulates postreceptor insulin signaling and glucose transport in muscle-specific insulin receptor knockout mice. Journal of Clinical Investigation, 1999, 104, 1257-1264.	3.9	192
147	Hypoxia-inducible factor-1α regulates β cell function in mouse and human islets. Journal of Clinical Investigation, 2010, 120, 2171-2183.	3.9	191
148	Receptors, Antireceptor Antibodies and Mechanisms of Insulin Resistance. New England Journal of Medicine, 1979, 300, 413-419.	13.9	188
149	Brown adipose tissue–specific insulin receptor knockout shows diabetic phenotype without insulin resistance. Journal of Clinical Investigation, 2001, 108, 1205-1213.	3.9	188
150	Skeletal Muscle-Selective Knockout of LKB1 Increases Insulin Sensitivity, Improves Glucose Homeostasis, and Decreases TRB3. Molecular and Cellular Biology, 2006, 26, 8217-8227.	1.1	185
151	Positive and Negative Roles of p85α and p85β Regulatory Subunits of Phosphoinositide 3-Kinase in Insulin Signaling. Journal of Biological Chemistry, 2003, 278, 48453-48466.	1.6	183
152	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	3.9	183
153	Ectopic Production of Chorionic Gonadotropin and Its Subunits by Islet-Cell Tumors. New England Journal of Medicine, 1977, 297, 565-569.	13.9	182
154	Thermoneutral housing exacerbates nonalcoholic fatty liver disease in mice and allows for sex-independent disease modeling. Nature Medicine, 2017, 23, 829-838.	15.2	178
155	A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box–binding protein-1 to modulate the unfolded protein response. Nature Medicine, 2010, 16, 438-445.	15.2	176
156	Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nature Medicine, 2012, 18, 918-925.	15.2	176
157	Loss of Skeletal Muscle HIF-1α Results in Altered Exercise Endurance. PLoS Biology, 2004, 2, e288.	2.6	175
158	FoxO1 integrates direct and indirect effects of insulin on hepatic glucose production and glucose utilization. Nature Communications, 2015, 6, 7079.	5.8	172
159	Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. Journal of Clinical Investigation, 2003, 111, 463-468.	3.9	171
160	ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Science Translational Medicine, 2014, 6, 247ra103.	5.8	169
161	The Insulin Receptor in Vertebrates Is Functionally More Conserved during Evolution than Insulin Itself. Endocrinology, 1979, 104, 1393-1402.	1.4	167
162	Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO Journal, 2003, 22, 4666-4676.	3.5	166

#	Article	IF	CITATIONS
163	Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. Journal of Clinical Investigation, 2003, 111, 1835-1842.	3.9	165
164	Metabolic effects of vanadyl sulfate in humans with non—insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metabolism: Clinical and Experimental, 2000, 49, 400-410.	1.5	164
165	Reduced β-cell mass and altered glucose sensing impair insulin-secretory function in βIRKO mice. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E41-E49.	1.8	162
166	Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. Journal of Clinical Investigation, 2001, 108, 153-160.	3.9	162
167	Regulation of Insulin Receptors and Insulin Responsiveness in 3T3-L1 Fatty Fibroblasts. Endocrinology, 1979, 104, 1383-1392.	1.4	161
168	Gut microbiota modulate neurobehavior through changes in brain insulin sensitivity and metabolism. Molecular Psychiatry, 2018, 23, 2287-2301.	4.1	161
169	Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Reports, 2018, 22, 3072-3086.	2.9	159
170	In vivo andin vitro studies of vanadate in human and rodent diabetes mellitus. Molecular and Cellular Biochemistry, 1995, 153, 217-231.	1.4	158
171	Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. Journal of Clinical Investigation, 2004, 113, 414-424.	3.9	158
172	Unraveling the mechanism of action of thiazolidinediones. Journal of Clinical Investigation, 2000, 106, 1305-1307.	3.9	156
173	Essential Role of Insulin Receptor Substrate 1 in Differentiation of Brown Adipocytes. Molecular and Cellular Biology, 2001, 21, 319-329.	1.1	155
174	Essential Role of Insulin and Insulin-Like Growth Factor 1 Receptor Signaling in Cardiac Development and Function. Molecular and Cellular Biology, 2007, 27, 1649-1664.	1.1	155
175	HYPOGLYCEMIA IN ASSOCIATION WITH EXTRAPANCREATIC TUMORS: DEMONSTRATION OF ELEVATED PLASMA NSILA–s BY A NEW RADIORECEPTOR ASSAY. Journal of Clinical Endocrinology and Metabolism, 1974, 38, 931-934.	1.8	150
176	Dynamics of Insulin Signaling in 3T3-L1 Adipocytes. Journal of Biological Chemistry, 1998, 273, 11548-11555.	1.6	150
177	Phosphoinositide 3-kinase regulatory subunit p85Â suppresses insulin action via positive regulation of PTEN. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12093-12097.	3.3	149
178	Adipose Depots Possess Unique Developmental Gene Signatures. Obesity, 2010, 18, 872-878.	1.5	149
179	Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. Journal of Clinical Investigation, 2014, 124, 3339-3351.	3.9	149
180	Essential Role of Insulin Receptor Substrate-2 in Insulin Stimulation of Glut4 Translocation and Glucose Uptake in Brown Adipocytes. Journal of Biological Chemistry, 2000, 275, 25494-25501.	1.6	148

#	Article	IF	CITATIONS
181	Differential Roles of Insulin Receptor Substrates in Brown Adipocyte Differentiation. Molecular and Cellular Biology, 2004, 24, 1918-1929.	1.1	148
182	Diabetes and Insulin in Regulation of Brain Cholesterol Metabolism. Cell Metabolism, 2010, 12, 567-579.	7.2	145
183	A Zebrafish Embryo Culture System Defines Factors that Promote Vertebrate Myogenesis across Species. Cell, 2013, 155, 909-921.	13.5	144
184	Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1189-1194.	3.3	143
185	Targeted Elimination of Peroxisome Proliferator-Activated Receptor Î ³ in Î ² Cells Leads to Abnormalities in Islet Mass without Compromising Glucose Homeostasis. Molecular and Cellular Biology, 2003, 23, 7222-7229.	1.1	141
186	Non-parallel evolution of metabolic and growth-promoting functions of insulin. Nature, 1981, 292, 644-646.	13.7	140
187	Muscle-specific knockout of PKC-λ impairs glucose transport and induces metabolic and diabetic syndromes. Journal of Clinical Investigation, 2007, 117, 2289-2301.	3.9	140
188	The Phosphoinositide 3-Kinase Regulatory Subunit p85α Can Exert Tumor Suppressor Properties through Negative Regulation of Growth Factor Signaling. Cancer Research, 2010, 70, 5305-5315.	0.4	140
189	Positive and Negative Regulation of Phosphoinositide 3-Kinase-Dependent Signaling Pathways by Three Different Gene Products of the p85α Regulatory Subunit. Molecular and Cellular Biology, 2000, 20, 8035-8046.	1.1	139
190	Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10587-10592.	3.3	138
191	Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c–SIRT2 axis. Nature Cell Biology, 2017, 19, 445-456.	4.6	138
192	Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6379-6384.	3.3	138
193	Insulin regulates astrocyte gliotransmission and modulates behavior. Journal of Clinical Investigation, 2018, 128, 2914-2926.	3.9	138
194	The Insulin Resistance of Acromegaly: Evidence for Two Alterations in the Insulin Receptor on Circulating Monocytes. Journal of Clinical Endocrinology and Metabolism, 1979, 48, 17-25.	1.8	137
195	Insulin and Insulin-like Growth Factor-1 Receptors Act as Ligand-specific Amplitude Modulators of a Common Pathway Regulating Gene Transcription. Journal of Biological Chemistry, 2010, 285, 17235-17245.	1.6	136
196	Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB Journal, 2014, 28, 4408-4419.	0.2	136
197	Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins. Cell Metabolism, 2019, 30, 735-753.e4.	7.2	136
198	Divergent roles of growth factors in the GnRH regulation of puberty in mice. Journal of Clinical Investigation, 2010, 120, 2900-2909.	3.9	135

#	Article	IF	CITATIONS
199	Glucose Homeostasis and Tissue Transcript Content of Insulin Signaling Intermediates in Four Inbred Strains of Mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1. Endocrinology, 2004, 145, 3307-3323.	1.4	132
200	Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Molecular Metabolism, 2016, 5, 795-803.	3.0	132
201	Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. Journal of Clinical Investigation, 2016, 126, 3433-3446.	3.9	132
202	Rescue of Obesity-Induced Infertility in Female Mice due to a Pituitary-Specific Knockout of the Insulin Receptor. Cell Metabolism, 2010, 12, 295-305.	7.2	131
203	Mitochondrial gene expression and increased oxidative metabolism: role in increased lifespan of fatâ€specific insulin receptor knockâ€out mice. Aging Cell, 2007, 6, 827-839.	3.0	130
204	Antibiotic effects on gut microbiota and metabolism are host dependent. Journal of Clinical Investigation, 2016, 126, 4430-4443.	3.9	130
205	Hypoglycemia Associated with Non-Islet-Cell Tumor and Insulin-like Growth Factors. New England Journal of Medicine, 1981, 305, 1452-1455.	13.9	129
206	Differential Roles of the Insulin and Insulin-like Growth Factor-I (IGF-I) Receptors in Response to Insulin and IGF-I. Journal of Biological Chemistry, 2004, 279, 38016-38024.	1.6	128
207	TGF-β2 is an exercise-induced adipokine that regulates glucose and fatty acid metabolism. Nature Metabolism, 2019, 1, 291-303.	5.1	128
208	Phosphorylation and dephosphorylation of the insulin receptor: evidence against an intrinsic phosphatase activity. Biochemistry, 1984, 23, 3298-3306.	1.2	127
209	Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. Journal of Clinical Investigation, 2002, 109, 141-149.	3.9	124
210	Novel adipocyte lines from brown fat: A model system for the study of differentiation, energy metabolism, and insulin action. BioEssays, 2002, 24, 382-388.	1.2	123
211	Increased P85α Is a Potent Negative Regulator of Skeletal Muscle Insulin Signaling and Induces in Vivo Insulin Resistance Associated with Growth Hormone Excess. Journal of Biological Chemistry, 2005, 280, 37489-37494.	1.6	123
212	Regulation of UCP1 and Mitochondrial Metabolism in Brown Adipose Tissue by Reversible Succinylation. Molecular Cell, 2019, 74, 844-857.e7.	4.5	123
213	Fructose and hepatic insulin resistance. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 308-322.	2.7	122
214	Acquired Defect in Interleukin-2 Production in Patients with Type I Diabetes Mellitus. New England Journal of Medicine, 1986, 315, 920-924.	13.9	120
215	Specific Roles of the p110α Isoform of Phosphatidylinsositol 3-Kinase in Hepatic Insulin Signaling and Metabolic Regulation. Cell Metabolism, 2010, 11, 220-230.	7.2	119
216	Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets. Diabetes, 2009, 58, 2607-2615.	0.3	118

#	Article	IF	CITATIONS
217	The Evolving Clinical Course of Patients with Insulin Receptor Autoantibodies: Spontaneous Remission or Receptor Proliferation with Hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 1978, 47, 985-995.	1.8	117
218	SHORT Syndrome with Partial Lipodystrophy Due to Impaired Phosphatidylinositol 3 Kinase Signaling. American Journal of Human Genetics, 2013, 93, 150-157.	2.6	117
219	Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis. Cell Reports, 2015, 11, 1220-1235.	2.9	117
220	Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nature Communications, 2012, 3, 902.	5.8	116
221	PKCδ regulates hepatic insulin sensitivity and hepatosteatosis in mice and humans. Journal of Clinical Investigation, 2011, 121, 2504-2517.	3.9	115
222	Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function. Diabetes, 2016, 65, 2201-2213.	0.3	114
223	Overexpression of Rad Inhibits Glucose Uptake in Cultured Muscle and Fat Cells. Journal of Biological Chemistry, 1996, 271, 23111-23116.	1.6	113
224	Lipoatrophic diabetes in Irs1-/-/Irs3-/- double knockout mice. Genes and Development, 2002, 16, 3213-3222.	2.7	113
225	Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metabolism, 2006, 3, 247-256.	7.2	113
226	Insulin Receptors, Receptor Antibodies, and the Mechanism of Insulin Action. , 1981, 37, 477-538.		111
227	Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nature Communications, 2017, 8, 14892.	5.8	111
228	Glucocorticoid-Induced Insulin Resistance in Vitro: Evidence for Both Receptor and Postreceptor Defects*. Endocrinology, 1981, 109, 1723-1730.	1.4	110
229	New mechanisms of glucocorticoid-induced insulin resistance: make no bones about it. Journal of Clinical Investigation, 2012, 122, 3854-3857.	3.9	108
230	Immunoprecipitation of the Insulin Receptor: A Sensitive Assay for Receptor Antibodies and a Specific Technique for Receptor Purification*. Journal of Clinical Endocrinology and Metabolism, 1979, 48, 59-65.	1.8	106
231	Insulin receptor phosphorylation in intact adipocytes and in a cell-free system. Biochemical and Biophysical Research Communications, 1982, 108, 1538-1548.	1.0	106
232	Adiponectin: linking the fat cell to insulin sensitivity. Lancet, The, 2003, 362, 1431-1432.	6.3	106
233	Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. Journal of Clinical Investigation, 2003, 111, 1835-1842.	3.9	106
234	Insulin Resistance, Acanthosis Nigricans, and Normal Insulin Receptors in a Young Woman: Evidence for a Postreceptor Defect. Journal of Clinical Endocrinology and Metabolism, 1978, 47, 620-625.	1.8	105

#	Article	IF	CITATIONS
235	High Fat Feeding Causes Insulin Resistance and a Marked Decrease in the Expression of Glucose Transporters (Glut 4) in Fat Cells of Rats*. Endocrinology, 1991, 129, 771-777.	1.4	105
236	Impact of Genetic Background on Development of Hyperinsulinemia and Diabetes in Insulin Receptor/Insulin Receptor Substrate-1 Double Heterozygous Mice. Diabetes, 2003, 52, 1528-1534.	0.3	105
237	Rad GTPase Deficiency Leads to Cardiac Hypertrophy. Circulation, 2007, 116, 2976-2983.	1.6	105
238	FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. Diabetes, 2019, 68, 556-570.	0.3	105
239	Pancreatic Cholera: Beneficial Effects of Treatment with Streptozotocin. New England Journal of Medicine, 1975, 292, 941-945.	13.9	103
240	Crucial role of the small GTPase Rac1 in insulinâ€stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma. FASEB Journal, 2010, 24, 2254-2261.	0.2	103
241	Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 2021, 52, 101304.	3.0	103
242	Insulin Signaling in the Central Nervous System Is Critical for the Normal Sympathoadrenal Response to Hypoglycemia. Diabetes, 2005, 54, 1447-1451.	0.3	101
243	Class IA Phosphatidylinositol 3-Kinase in Pancreatic β Cells Controls Insulin Secretion by Multiple Mechanisms. Cell Metabolism, 2010, 12, 619-632.	7.2	101
244	Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. Journal of Clinical Investigation, 2013, 123, 4667-4680.	3.9	101
245	Distinct pathways of insulin-regulated versus diabetes-regulated gene expression: An in vivo analysis in MIRKO mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 16525-16530.	3.3	100
246	Thymic Lymphocytes in Obese (ob/ob) Mice. Journal of Biological Chemistry, 1974, 249, 4127-4131.	1.6	99
247	The riddle of tumour hypoglycaemia revisited. Clinics in Endocrinology and Metabolism, 1980, 9, 335-360.	1.8	98
248	Characterization of Multiple Signaling Pathways of Insulin in the Regulation of Vascular Endothelial Growth Factor Expression in Vascular Cells and Angiogenesis. Journal of Biological Chemistry, 2003, 278, 31964-31971.	1.6	97
249	Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3545-3550.	3.3	97
250	Leptin Suppresses Stearoyl-CoA Desaturase 1 by Mechanisms Independent of Insulin and Sterol Regulatory Element-Binding Protein-1c. Diabetes, 2006, 55, 2032-2041.	0.3	95
251	Putting the genes for type II diabetes on the map. Nature Medicine, 2001, 7, 277-279.	15.2	94
252	The role and importance of brown adipose tissue in energy homeostasis. Current Opinion in Pediatrics, 2010, 22, 478-484.	1.0	94

#	Article	IF	CITATIONS
253	Site and mechanism of leptin action in a rodent form of congenital lipodystrophy. Journal of Clinical Investigation, 2004, 113, 414-424.	3.9	94
254	Hepatocyte Stress Increases Expression of Yesâ€Associated Protein and Transcriptional Coactivator With PDZâ€Binding Motif in Hepatocytes to Promote Parenchymal Inflammation and Fibrosis. Hepatology, 2020, 71, 1813-1830.	3.6	93
255	Myeloid Cell-Restricted Insulin Receptor Deficiency Protects Against Obesity-Induced Inflammation and Systemic Insulin Resistance. PLoS Genetics, 2010, 6, e1000938.	1.5	92
256	Familial Hyperproinsulinemia Due to a Proposed Defect in Conversion of Proinsulin to Insulin. New England Journal of Medicine, 1984, 311, 629-634.	13.9	91
257	Characterization of the Receptors for Insulin and the Insulin-Like Growth Factors on Micro- and Macrovascular Tissues*. Endocrinology, 1985, 117, 1222-1229.	1.4	91
258	p50α/p55α Phosphoinositide 3-Kinase Knockout Mice Exhibit Enhanced Insulin Sensitivity. Molecular and Cellular Biology, 2004, 24, 320-329.	1.1	91
259	Regulation of Vascular Endothelial Growth Factor Expression and Vascularization in the Myocardium by Insulin Receptor and PI3K/Akt Pathways in Insulin Resistance and Ischemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 787-793.	1.1	91
260	Lipodystrophy Due to Adipose Tissue–Specific Insulin Receptor Knockout Results in Progressive NAFLD. Diabetes, 2016, 65, 2187-2200.	0.3	91
261	Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor. Cell Metabolism, 2017, 25, 448-462.	7.2	91
262	Defining the underlying defect in insulin action in type 2 diabetes. Diabetologia, 2021, 64, 994-1006.	2.9	91
263	Role of Insulin Action and Cell Size on Protein Expression Patterns in Adipocytes. Journal of Biological Chemistry, 2004, 279, 31902-31909.	1.6	90
264	Cross-talk between Insulin and Wnt Signaling in Preadipocytes. Journal of Biological Chemistry, 2012, 287, 12016-12026.	1.6	90
265	Receptors for Insulin, NSILA-s, and Growth Hormone: Applications to Disease States in Man. , 1975, 31, 95-139.		90
266	Rad and Rad-related GTPases Interact with Calmodulin and Calmodulin-dependent Protein Kinase II. Journal of Biological Chemistry, 1997, 272, 11832-11839.	1.6	89
267	Differential Roles of Insulin Receptor Substrates in the Anti-apoptotic Function of Insulin-like Growth Factor-1 and Insulin. Journal of Biological Chemistry, 2002, 277, 31601-31611.	1.6	89
268	Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8478-E8487.	3.3	89
269	Receptors for Peptide Hormones. Annals of Internal Medicine, 1977, 86, 205.	2.0	89
270	Insulin Receptor Substrate 3 (IRS-3) and IRS-4 Impair IRS-1- and IRS-2-Mediated Signaling. Molecular and Cellular Biology, 2001, 21, 26-38.	1.1	87

#	Article	IF	CITATIONS
271	Prevalence of Mutations in AGPAT2 Among Human Lipodystrophies. Diabetes, 2003, 52, 1573-1578.	0.3	87
272	Role of suppressors of cytokine signaling SOCS-1 and SOCS-3 in hepatic steatosis and the metabolic syndrome. Hepatology Research, 2005, 33, 185-192.	1.8	87
273	Membrane Receptors for Polypeptide Hormones. , 1975, , 81-146.		87
274	Circulating NSILA-s in Man: Preliminary Studies of Stimuli <i>in Vivo</i> and of Binding to Plasma Components. Journal of Clinical Endocrinology and Metabolism, 1975, 41, 475-484.	1.8	86
275	The Insulin Receptor and Its Substrate: Molecular Determinants of Early Events in Insulin Action. , 1993, 48, 291-339.		86
276	Causes of insulin resistance. Nature, 1995, 373, 384-385.	13.7	86
277	Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2724-2729.	3.3	86
278	Glypican-4 Enhances Insulin Signaling via Interaction With the Insulin Receptor and Serves as a Novel Adipokine. Diabetes, 2012, 61, 2289-2298.	0.3	85
279	Altered Insulin Signaling in Retinal Tissue in Diabetic States. Journal of Biological Chemistry, 2004, 279, 37997-38006.	1.6	84
280	The 60 kDa Insulin Receptor Substrate Functions Like an IRS Protein (pp60IRS3) in Adipose Cells. Biochemistry, 1997, 36, 8304-8310.	1.2	83
281	Intrinsic Heterogeneity in Adipose Tissue of Fat-specific Insulin Receptor Knock-out Mice Is Associated with Differences in Patterns of Gene Expression. Journal of Biological Chemistry, 2004, 279, 31891-31901.	1.6	83
282	Measurement of Human Brown Adipose Tissue Volume and Activity Using Anatomic MR Imaging and Functional MR Imaging. Journal of Nuclear Medicine, 2013, 54, 1584-1587.	2.8	83
283	Developmental and functional heterogeneity of white adipocytes within a single fat depot. EMBO Journal, 2019, 38, .	3.5	83
284	Cell Culture Studies on Patients with Extreme Insulin Resistance. I. Receptor Defects on Cultured Fibroblasts*. Journal of Clinical Endocrinology and Metabolism, 1982, 54, 261-268.	1.8	81
285	Intracellular binding sites for insulin are immunologically distinct from those on the plasma membrane. Nature, 1977, 269, 698-700.	13.7	80
286	TRB3 Blocks Adipocyte Differentiation through the Inhibition of C/EBPβ Transcriptional Activity. Molecular and Cellular Biology, 2007, 27, 6818-6831.	1.1	80
287	Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB Journal, 2013, 27, 3257-3271.	0.2	80
288	Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4770-4775.	3.3	79

#	Article	IF	CITATIONS
289	The Differential Role of Hif1β/Arnt and the Hypoxic Response in Adipose Function, Fibrosis, and Inflammation. Cell Metabolism, 2011, 14, 491-503.	7.2	79
290	The Development of Insulin Receptors and Responsiveness Is an Early Marker of Differentiation in the Muscle Cell Line L6*. Endocrinology, 1986, 118, 446-455.	1.4	77
291	Anatomical and Functional Assessment of Brown Adipose Tissue by Magnetic Resonance Imaging. Obesity, 2012, 20, 1519-1526.	1.5	77
292	Postnatal Growth Responses to Insulin-Like Growth Factor I in Insulin Receptor Substrate-1-Deficient Mice1. Endocrinology, 1999, 140, 5478-5487.	1.4	76
293	Loss of Neuroprotective Survival Signal in Mice Lacking Insulin Receptor Gene in Rod Photoreceptor Cells. Journal of Biological Chemistry, 2008, 283, 19781-19792.	1.6	76
294	Ablation of ARNT/HIF1β in Liver Alters Gluconeogenesis, Lipogenic Gene Expression, and Serum Ketones. Cell Metabolism, 2009, 9, 428-439.	7.2	76
295	Tbx15 controls skeletal muscle fibre-type determination and muscle metabolism. Nature Communications, 2015, 6, 8054.	5.8	76
296	The early intracellular signaling pathway for the insulin/insulin-like growth factor receptor family in the mammalian central nervous system. Molecular Neurobiology, 1996, 13, 155-183.	1.9	75
297	The Insulin Receptor - A Critical Link in Glucose Homeostasis and Insulin Action. Journal of Basic and Clinical Physiology and Pharmacology, 1998, 9, 89-110.	0.7	75
298	Knockout models are useful tools to dissect the pathophysiology and genetics of insulin resistance. Clinical Endocrinology, 2002, 57, 1-9.	1.2	75
299	Reduced expression of the NADPH oxidase NOX4 is a hallmark of adipocyte differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1015-1027.	1.9	75
300	Impaired sodium excretion and increased blood pressure in mice with targeted deletion of renal epithelial insulin receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6469-6474.	3.3	75
301	Mesodermal developmental gene Tbx15 impairs adipocyte differentiation and mitochondrial respiration. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2771-2776.	3.3	75
302	Frataxin promotes antioxidant defense in a thiol-dependent manner resulting in diminished malignant transformation in vitro. Human Molecular Genetics, 2002, 11, 815-821.	1.4	74
303	The p85α Regulatory Subunit of Phosphoinositide 3-Kinase Potentiates c-Jun N-Terminal Kinase-Mediated Insulin Resistance. Molecular and Cellular Biology, 2007, 27, 2830-2840.	1.1	74
304	Heterogeneity of the Insulin-Receptor Interaction in Lipoatropic Diabetes*. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 416-425.	1.8	73
305	Insulin Receptor Substrate Proteins Create a Link between the Tyrosine Phosphorylation Cascade and the Ca2+-ATPases in Muscle and Heart. Journal of Biological Chemistry, 1997, 272, 23696-23702.	1.6	70
306	[48] Phosphorylation of the insulin receptor in cultured hepatoma cells and a solubilized system. Methods in Enzymology, 1985, 109, 609-621.	0.4	69

#	Article	IF	CITATIONS
307	Rad GTPase Attenuates Vascular Lesion Formation by Inhibition of Vascular Smooth Muscle Cell Migration. Circulation, 2005, 111, 1071-1077.	1.6	69
308	A Systems Biology Approach Identifies Inflammatory Abnormalities Between Mouse Strains Prior to Development of Metabolic Disease. Diabetes, 2010, 59, 2960-2971.	0.3	69
309	"White Paper―meeting summary and catalyst for future inquiry:ÂComplex mechanisms linking neurocognitive dysfunctionAto insulin resistance and other metabolic dysfunction. F1000Research, 2016, 5, 353.	0.8	69
310	Complex mechanisms linking neurocognitive dysfunctionÂto insulin resistance and other metabolic dysfunction. F1000Research, 2016, 5, 353.	0.8	68
311	A Cell-Autonomous Signature of Dysregulated Protein Phosphorylation Underlies Muscle Insulin Resistance in Type 2 Diabetes. Cell Metabolism, 2020, 32, 844-859.e5.	7.2	68
312	A Kinase-Independent Role for Unoccupied Insulin and IGF-1 Receptors in the Control of Apoptosis. Science Signaling, 2010, 3, ra87.	1.6	67
313	FGF6 and FGF9 regulate UCP1 expression independent of brown adipogenesis. Nature Communications, 2020, 11, 1421.	5.8	67
314	Insulin inhibition of antibody-dependent cytoxicity and insulin receptors in macrophages. Nature, 1977, 265, 632-635.	13.7	65
315	Insulin and antibodies against insulin receptor cap on the membrane of cultured human lymphocytes. Nature, 1980, 286, 729-731.	13.7	65
316	Human Insulin Receptor Substrate-1 (IRS-1) Polymorphism G972R Causes IRS-1 to Associate with the Insulin Receptor and Inhibit Receptor Autophosphorylation. Journal of Biological Chemistry, 2005, 280, 6441-6446.	1.6	65
317	CDK4 is an essential insulin effector in adipocytes. Journal of Clinical Investigation, 2015, 126, 335-348.	3.9	65
318	Treatment by Plasma Exchange of a Patient with Autoantibodies to the Insulin Receptor. New England Journal of Medicine, 1979, 300, 477-480.	13.9	64
319	Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity. Biochemistry, 1987, 26, 2374-2382.	1.2	64
320	Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4481-4486.	3.3	64
321	Autoantibodies to the Insulin Receptor. Journal of Clinical Investigation, 1977, 60, 784-794.	3.9	64
322	Insulin Resistance: A Common Feature of Diabetes Mellitus. New England Journal of Medicine, 1986, 315, 252-254.	13.9	63
323	Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: A paradigm shift for host–microbe interactions. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2461-2466.	3.3	63
324	Subunit structure of the insulin receptor of the human lymphocyte. Biochemistry, 1980, 19, 64-70.	1.2	62

#	Article	IF	CITATIONS
325	Acute and Chronic Regulation of Phosphoenolpyruvate Carboxykinase mRNA by Insulin and Glucose. Molecular Endocrinology, 1989, 3, 840-845.	3.7	62
326	Deletion of Shp2 Tyrosine Phosphatase in Muscle Leads to Dilated Cardiomyopathy, Insulin Resistance, and Premature Death. Molecular and Cellular Biology, 2009, 29, 378-388.	1.1	62
327	Multi-dimensional Transcriptional Remodeling by Physiological Insulin InÂVivo. Cell Reports, 2019, 26, 3429-3443.e3.	2.9	62
328	Successful Immunosuppressive Therapy in Insulin Resistant Diabetes Caused by Anti-Insulin Receptor Autoantibodies. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 15-21.	1.8	61
329	Analysis of Insulin Action Using Differentiated and Dedifferentiated Hepatoma Cells*. Endocrinology, 1983, 113, 1201-1209.	1.4	61
330	β-Cell Hyperplasia Induced by Hepatic Insulin Resistance. Diabetes, 2009, 58, 820-828.	0.3	60
331	Insulin-induced Up-regulated Uncoupling Protein-1 Expression Is Mediated by Insulin Receptor Substrate 1 through the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway in Fetal Brown Adipocytes. Journal of Biological Chemistry, 2003, 278, 10221-10231.	1.6	59
332	Reduction of the Cholesterol Sensor SCAP in the Brains of Mice Causes Impaired Synaptic Transmission and Altered Cognitive Function. PLoS Biology, 2013, 11, e1001532.	2.6	59
333	Protein-tyrosine Phosphatase 1B Deficiency Reduces Insulin Resistance and the Diabetic Phenotype in Mice with Polygenic Insulin Resistance*. Journal of Biological Chemistry, 2007, 282, 23829-23840.	1.6	58
334	FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nature Communications, 2019, 10, 1582.	5.8	57
335	High Circulating Leptin Receptors with Normal Leptin Sensitivity in Liver-specific Insulin Receptor Knock-out (LIRKO) Mice. Journal of Biological Chemistry, 2007, 282, 23672-23678.	1.6	56
336	Loss of Akt1 in Mice Increases Energy Expenditure and Protects against Diet-Induced Obesity. Molecular and Cellular Biology, 2012, 32, 96-106.	1.1	56
337	The insulin receptor of the turkey erythrocyte characterization of the membrane-bound receptor. Biochimica Et Biophysica Acta - Biomembranes, 1976, 443, 227-242.	1.4	55
338	Variation in Insulin Receptor Messenger Ribonucleic Acid Expression in Human and Rodent Tissues. Molecular Endocrinology, 1987, 1, 759-766.	3.7	55
339	Insulin Augmentation of Glucose-Stimulated Insulin Secretion Is Impaired in Insulin-Resistant Humans. Diabetes, 2012, 61, 301-309.	0.3	54
340	Knockout Mice Challenge our Concepts of Glucose Homeostasis and the Pathogenesis of Diabetes. Experimental Diabesity Research, 2003, 4, 169-182.	1.0	52
341	Analysis of gene expression in pathophysiological states: Balancing false discovery and false negative rates. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 649-653.	3.3	52
342	Bi-directional Regulation of Brown Fat Adipogenesis by the Insulin Receptor. Journal of Biological Chemistry, 2003, 278, 33377-33383.	1.6	51

#	Article	IF	CITATIONS
343	Identification of Interactive Loci Linked to Insulin and Leptin in Mice With Genetic Insulin Resistance. Diabetes, 2003, 52, 1535-1543.	0.3	51
344	Muscle-Specific Deletion of the Glut4 Glucose Transporter Alters Multiple Regulatory Steps in Glycogen Metabolism. Molecular and Cellular Biology, 2005, 25, 9713-9723.	1.1	51
345	PI3-kinase mutation linked to insulin and growth factor resistance in vivo. Journal of Clinical Investigation, 2016, 126, 1401-1412.	3.9	51
346	Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism. Cell Reports, 2022, 38, 110277.	2.9	51
347	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	50
348	Picking a Research Problem The Critical Decision. New England Journal of Medicine, 1994, 330, 1530-1533.	13.9	49
349	DEMONSTRATION OF A PRIMARY (? GENETIC) DEFECT IN INSULIN RECEPTORS IN FIBROBLASTS FROM A PATIENT WITH THE SYNDROME OF INSULIN RESISTANCE AND ACANTHOSIS NIGRICANS TYPE A. Journal of Clinical Endocrinology and Metabolism, 1980, 50, 1139-1141.	1.8	48
350	Rad, a Novel Ras-related GTPase, Interacts with Skeletal Muscle β-Tropomyosin. Journal of Biological Chemistry, 1996, 271, 768-773.	1.6	48
351	Diabetes in ageing: pathways for developing the evidence base for clinical guidance. Lancet Diabetes and Endocrinology,the, 2020, 8, 855-867.	5.5	47
352	Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging, 2016, 8, 1201-1222.	1.4	47
353	Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase. Journal of Cellular Biochemistry, 1987, 33, 15-26.	1.2	46
354	Short-lived cytoplasmic regulators of gene expression in cell cybrids. Nature, 1981, 290, 717-720.	13.7	45
355	Interaction of the insulin receptor kinase with serine/threonine kinases in vitro. Journal of Cellular Biochemistry, 1985, 28, 171-182.	1.2	45
356	Insulin and IGF-I Inhibit GH Synthesis and Release in Vitro and in Vivo by Separate Mechanisms. Endocrinology, 2013, 154, 2410-2420.	1.4	45
357	Effect of the Insulin Mimetic L-783,281 on Intracellular [Ca2+] and Insulin Secretion From Pancreatic Â-Cells. Diabetes, 2002, 51, S43-S49.	0.3	44
358	MOLECULAR BIOLOGY: HNFsLinking the Liver and Pancreatic Islets in Diabetes. Science, 2004, 303, 1311-1312.	6.0	44
359	Effect of Cholesterol Reduction on Receptor Signaling in Neurons. Journal of Biological Chemistry, 2015, 290, 26383-26392.	1.6	44
360	Insulin Resistance in Human iPS Cells Reduces Mitochondrial Size and Function. Scientific Reports, 2016, 6, 22788.	1.6	44

#	Article	IF	CITATIONS
361	Alterations in Insulin Receptor Autophosphorylation in Insulin Resistance: Correlation With Altered Sensitivity to Glucose Transport and Antilipolysis to Insulin*. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 992-999.	1.8	43
362	Insulin and the β3-Adrenoceptor Differentially Regulate Uncoupling Protein-1 Expression. Molecular Endocrinology, 2000, 14, 764-773.	3.7	43
363	Cellular and Molecular Mechanisms of Adipose Tissue Plasticity in Muscle Insulin Receptor Knockout Mice. Endocrinology, 2004, 145, 1926-1932.	1.4	43
364	Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14512-14517.	3.3	43
365	Autoantibodies to the insulin receptor activate glycogen synthase in rat adipocytes. Molecular and Cellular Biochemistry, 1978, 22, 153-158.	1.4	42
366	Characterization of the Insulin Receptor and Insulin-Degrading Activity from Human Lymphocytes by Quantitative Polyacrylamide Gel Electrophoresis*. Endocrinology, 1980, 106, 40-49.	1.4	42
367	Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85Â. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2124-2128.	3.3	42
368	Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy. Journal of Molecular and Cellular Cardiology, 2009, 47, 664-675.	0.9	42
369	3-Hydroxyisobutyrate, A Strong Marker of Insulin Resistance in Type 2 Diabetes and Obesity That Modulates White and Brown Adipocyte Metabolism. Diabetes, 2020, 69, 1903-1916.	0.3	42
370	Antibody-induced Desensitization of the Insulin Receptor. Journal of Clinical Investigation, 1980, 66, 1124-1134.	3.9	42
371	Cell Membrane Receptors for Polypeptide Hormones: Applications to the Study of Disease States in Mice and Men. American Journal of Clinical Pathology, 1975, 63, 656-668.	0.4	41
372	Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action. Cellular Signalling, 2018, 47, 1-15.	1.7	41
373	Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Molecular Metabolism, 2019, 21, 68-81.	3.0	41
374	Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
375	Berson, Yalow, and the JCI: the agony and the ecstasy. Journal of Clinical Investigation, 2004, 114, 1051-1054.	3.9	41
376	Insulin's discovery: New insights on its ninetieth birthday. Diabetes/Metabolism Research and Reviews, 2012, 28, 293-304.	1.7	40
377	Regional differences in brain glucose metabolism determined by imaging mass spectrometry. Molecular Metabolism, 2018, 12, 113-121.	3.0	40
378	The Human Erythrocyte Insulin-Like Growth Factor I Receptor:Characterization and Demonstration of Ligand-Stimulated Autophosphorylation. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 692-699.	1.8	39

#	Article	IF	CITATIONS
379	7 The Insulin Receptor and Tyrosine Phosphorylation. The Enzymes, 1986, , 247-310.	0.7	39
380	Phosphorylation of insulin-like growth factor I receptor by the insulin receptor tyrosine kinase in intact cultured skeletal muscle cells. Biochemistry, 1988, 27, 3222-3228.	1.2	39
381	Altered Signaling and Cell Cycle Regulation in Embryonal Stem Cells with a Disruption of the Gene for Phosphoinositide 3-Kinase Regulatory Subunit p851±. Journal of Biological Chemistry, 2003, 278, 5099-5108.	1.6	39
382	Mitochondrial proton leak in obesity-resistant and obesity-prone mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R1773-R1780.	0.9	39
383	Dysfunctional Subcutaneous Fat With Reduced Dicer and Brown Adipose Tissue Gene Expression in HIV-Infected Patients. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1225-1234.	1.8	39
384	Cascade of autophosphorylation in the ?-subunit of the insulin receptor. Journal of Cellular Biochemistry, 1989, 39, 429-441.	1.2	38
385	Effects of phosphorylation on function of the Rad GTPase. Biochemical Journal, 1998, 333, 609-614.	1.7	38
386	Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1889-1894.	3.3	38
387	Temporal dynamics of liver mitochondrial protein acetylation and succinylation and metabolites due to high fat diet and/or excess glucose or fructose. PLoS ONE, 2018, 13, e0208973.	1.1	38
388	Radioreceptor Assay of Insulin: Comparison of Plasma and Pancreatic Insulins and Proinsulins. Journal of Clinical Endocrinology and Metabolism, 1975, 41, 438-445.	1.8	37
389	Insulin differentially regulates protein phosphotyrosine phosphatase activity in rat hepatoma cells. Biochemistry, 1992, 31, 10338-10344.	1.2	37
390	Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood–brain barrier. Biochemical and Biophysical Research Communications, 2004, 317, 315-320.	1.0	37
391	Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation. Age, 2010, 32, 209-222.	3.0	37
392	Shox2 is a molecular determinant of depot-specific adipocyte function. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11409-11414.	3.3	37
393	Loss of Insulin Receptor in Osteoprogenitor Cells Impairs Structural Strength of Bone. Journal of Diabetes Research, 2014, 2014, 1-9.	1.0	37
394	<i>Tbx15</i> Defines a Glycolytic Subpopulation and White Adipocyte Heterogeneity. Diabetes, 2017, 66, 2822-2829.	0.3	37
395	Single-cell transcriptional networks in differentiating preadipocytes suggest drivers associated with tissue heterogeneity. Nature Communications, 2020, 11, 2117.	5.8	37
396	Genetic Insulin Resistance Is a Potent Regulator of Gene Expression and Proliferation in Human iPS Cells. Diabetes, 2014, 63, 4130-4142.	0.3	36

#	Article	IF	CITATIONS
397	The Role of Insulin Receptors and Receptor Antibodies in States of Altered Insulin Action. Experimental Biology and Medicine, 1979, 162, 13-21.	1.1	35
398	Insulin induces rapid accumulation of insulin receptors and increases tyrosine kinase activity in the nucleus of cultured adipocytes. Journal of Cellular Physiology, 1993, 157, 217-228.	2.0	35
399	Region-specific mRNA expression of phosphatidylinositol 3-kinase regulatory isoforms in the central nervous system of C57BL/6J mice. , 1999, 415, 105-120.		35
400	Association of Insulin Receptor Substrate 1 (IRS-1) Y895 with Grb-2 Mediates the Insulin Signaling Involved in IRS-1-Deficient Brown Adipocyte Mitogenesis. Molecular and Cellular Biology, 2001, 21, 2269-2280.	1.1	35
401	Insulin-like Growth Factor 1-mediated Hyperthermia Involves Anterior Hypothalamic Insulin Receptors. Journal of Biological Chemistry, 2011, 286, 14983-14990.	1.6	35
402	Arrestin domain-containing 3 (Arrdc3) modulates insulin action and glucose metabolism in liver. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6733-6740.	3.3	35
403	Mosaic analysis of insulin receptor function. Journal of Clinical Investigation, 2004, 113, 209-219.	3.9	35
404	Autophosphorylation within insulin receptor .betasubunits can occur as an intramolecular process. Biochemistry, 1991, 30, 7740-7746.	1.2	34
405	Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nature Biomedical Engineering, 2020, 4, 801-813.	11.6	34
406	Cross-talk between Phorbol Ester-mediated Signaling and Tyrosine Kinase Proto-oncogenes. Journal of Biological Chemistry, 1997, 272, 31172-31181.	1.6	33
407	A patient with type B insulin resistance syndrome, responsive to immune therapy. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 835-840.	2.9	33
408	Metabolic Syndrome: Is Nlrp3 Inflammasome a Trigger or a Target of Insulin Resistance?. Circulation Research, 2011, 108, 1160-1162.	2.0	33
409	p85 \hat{l} ± deficiency protects \hat{l}^2 -cells from endoplasmic reticulum stress-induced apoptosis. Proceedings of the United States of America, 2014, 111, 1192-1197.	3.3	33
410	Insulin/IGF1 signalling mediates the effects of β ₂ â€adrenergic agonist on muscle proteostasis and growth. Journal of Cachexia, Sarcopenia and Muscle, 2019, 10, 455-475.	2.9	33
411	Elevated GH/IGF-I, Due to Somatotrope-Specific Loss of Both IGF-I and Insulin Receptors, Alters Glucose Homeostasis and Insulin Sensitivity in a Diet-Dependent Manner. Endocrinology, 2011, 152, 4825-4837.	1.4	32
412	Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C–ι. Metabolism: Clinical and Experimental, 2012, 61, 459-469.	1.5	32
413	Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor. Diabetes, 2017, 66, 886-896.	0.3	32
414	Cell Culture Studies on Patients with Extreme Insulin Resistance. II. Abnormal Biological Responses in Cultured Fibroblasts*. Journal of Clinical Endocrinology and Metabolism, 1982, 54, 269-275.	1.8	31

#	Article	IF	CITATIONS
415	Dexamethasone-Induced Changes in Phosphorylation of the Insulin and Epidermal Growth Factor Receptors and Their Substrates in Intact Rat Hepatocytes*. Endocrinology, 1988, 123, 2214-2222.	1.4	31
416	The Branch Point Enzyme of the Mevalonate Pathway for Protein Prenylation Is Overexpressed in the ob / ob Mouse and Induced by Adipogenesis. Molecular and Cellular Biology, 2000, 20, 2158-2166.	1.1	31
417	GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization. Journal of Clinical Investigation, 2003, 111, 1555-1562.	3.9	31
418	Triglycerides and toggling the tummy. Nature Genetics, 2000, 25, 6-7.	9.4	30
419	Increased Insulin Sensitivity in IGF-I Receptor-Deficient Brown Adipocytes. Diabetes, 2002, 51, 743-754.	0.3	30
420	Can We Nip Obesity in Its Vascular Bud?. Science, 2008, 322, 542-543.	6.0	30
421	Role of PKCδ in Insulin Sensitivity and Skeletal Muscle Metabolism. Diabetes, 2015, 64, 4023-4032.	0.3	30
422	Homozygous receptors for insulin and not IGF-1 accelerate intimal hyperplasia in insulin resistance and diabetes. Nature Communications, 2019, 10, 4427.	5.8	30
423	Insulin receptors and the molecular mechanism of insulin action. Diabetes/metabolism Reviews, 1985, 1, 5-32.	0.2	29
424	Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan. Aging Cell, 2017, 16, 761-772.	3.0	29
425	Insulin action in the brain: cell types, circuits, and diseases. Trends in Neurosciences, 2022, 45, 384-400.	4.2	29
426	Thioesterase Superfamily Member 2/Acyl-CoA Thioesterase 13 (Them2/Acot13) Regulates Adaptive Thermogenesis in Mice. Journal of Biological Chemistry, 2013, 288, 33376-33386.	1.6	28
427	Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology, 2019, 160, 2165-2179.	1.4	28
428	Extracellular miRNAs as mediators of obesityâ€associated disease. Journal of Physiology, 2022, 600, 1155-1169.	1.3	28
429	Photoreactive Insulin Derivatives: Comparison of Biologic Activity and Labeling Properties of Three Analogues in Isolated Rat Adipocytes. Diabetes, 1982, 31, 1068-1076.	0.3	27
430	Characterization of phosphatidylinositol kinase activity associated with the insulin receptor. FEBS Journal, 1986, 155, 345-351.	0.2	27
431	The Insulin Receptor Gene and Its Expression in Insulin-Resistant Mice*. Endocrinology, 1988, 123, 594-600.	1.4	27
432	Ablation of ARNT/HIF1β in Liver Alters Gluconeogenesis, Lipogenic Gene Expression, and Serum Ketones. Cell Metabolism, 2009, 9, 565.	7.2	27

#	Article	IF	CITATIONS
433	Signaling defects associated with insulin resistance in nondiabetic and diabetic individuals and modification by sex. Journal of Clinical Investigation, 2021, 131, .	3.9	27
434	Altered Expression and Function of the Insulin Receptor in a Family with Lipoatrophic Diabetes*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 1284-1293.	1.8	26
435	Pancreatic Function in Carboxyl-Ester Lipase Knockout Mice. Pancreatology, 2010, 10, 467-476.	0.5	26
436	Differential effects of angiopoietin-like 4 in brain and muscle on regulation of lipoprotein lipase activity. Molecular Metabolism, 2015, 4, 144-150.	3.0	26
437	Alterations in the Hepatic Insulin Receptor Kinase in Genetic and Acquired Obesity in Rats*. Endocrinology, 1989, 125, 2454-2462.	1.4	25
438	Transcriptional and posttranscriptional regulation of tyrosine aminotransferase by insulin in rat hepatoma cells. Biochemistry, 1988, 27, 495-500.	1.2	24
439	Insulin-Like Growth Factor-Mediated Phosphorylation and Protooncogene Induction in Madin-Darby Canine Kidney Cells. Molecular Endocrinology, 1991, 5, 51-60.	3.7	24
440	Integrating Extracellular Flux Measurements and Genome-Scale Modeling Reveals Differences between Brown and White Adipocytes. Cell Reports, 2017, 21, 3040-3048.	2.9	24
441	TRPV1 neurons regulate β-cell function in a sex-dependent manner. Molecular Metabolism, 2018, 18, 60-67.	3.0	24
442	Use of Somatostatin and Somatostatin Analogs in a Patient with a Glucagonoma. Journal of Clinical Endocrinology and Metabolism, 1981, 53, 543-549.	1.8	23
443	Autoimmunity and the aetiology of insulin-dependent diabetes mellitus. Nature, 1982, 299, 15-16.	13.7	23
444	Cellular Compartmentalization in Insulin Action: Altered Signaling by a Lipid-Modified IRS-1. Molecular and Cellular Biology, 2000, 20, 6849-6859.	1.1	23
445	SOCS-1 deficiency does not prevent diet-induced insulin resistance. Biochemical and Biophysical Research Communications, 2008, 377, 447-452.	1.0	23
446	Signal transducer and activator of transcriptionÂ3 and the phosphatidylinositolÂ3â€kinase regulatory subunits p55α and p50α regulate autophagy <i>inÂvivo</i> . FEBS Journal, 2014, 281, 4557-4567.	2.2	23
447	Mitochondria, obesity and aging. Aging, 2012, 4, 859-860.	1.4	23
449	Identification and High Yield Purification of Insulin-Like Growth Factors (Nonsuppressible Insulin-Like) Tj ETQq0 O	0 rgBT /O	verlock 10 Tf
44 ð	Clinical Endocrinology and Metabolism, 1979, 48, 43-49.	1.0	22
449	Differentiation-Dependent Phosphorylation of a 175,000 Molecular Weight Protein in Response to Insulin and Insulin-Like Growth Factor-I in L6 Skeletal Muscle Cells*. Endocrinology, 1989, 125, 1599-1605.	1.4	22
450	Atypical β-adrenergic effects on insulin signaling and action in β3-adrenoceptor-deficient brown adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E146-E153.	1.8	22

#	Article	IF	CITATIONS
451	Unraveling the Paradox of Selective Insulin Resistance in the Liver: the Brain–Liver Connection. Diabetes, 2016, 65, 1481-1483.	0.3	22
452	PI 3-Kinase Regulatory Subunits as Regulators of the Unfolded Protein Response. Methods in Enzymology, 2011, 490, 147-158.	0.4	21
453	Peripheral Insulin Regulates a Broad Network of Gene Expression in Hypothalamus, Hippocampus, and Nucleus Accumbens. Diabetes, 2021, 70, 1857-1873.	0.3	21
454	Altered Insulin Distribution and Metabolism in Type I Diabetics Assessed by [123I]Insulin Scanning*. Journal of Clinical Endocrinology and Metabolism, 1987, 64, 801-808.	1.8	20
455	Different Pathways of Postreceptor Desensitization following Chronic Insulin Treatment and in Cells Overexpressing Constitutively Active Insulin Receptors. Journal of Biological Chemistry, 1996, 271, 28206-28211.	1.6	20
456	Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. Journal of the American Society of Nephrology: JASN, 2021, 32, 2331-2351.	3.0	20
457	Absence of Diabetes and Pancreatic Exocrine Dysfunction in a Transgenic Model of Carboxyl-Ester Lipase-MODY (Maturity-Onset Diabetes of the Young). PLoS ONE, 2013, 8, e60229.	1.1	20
458	Adriamycin Therapy for Advanced Insulinoma. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 142-148.	1.8	19
459	Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism. Nature Communications, 2019, 10, 3412.	5.8	19
460	Dynamic changes in DICER levels in adipose tissue control metabolic adaptations to exercise. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23932-23941.	3.3	19
461	Persistent infection with a nontransforming RNA virus leads to impaired growth factor receptors and response. Journal of Cellular Physiology, 1986, 128, 457-465.	2.0	18
462	Coordinate Roles of Insulin and Glucose on the Growth of Hepatoma Cells in Culture*. Endocrinology, 1986, 118, 2519-2524.	1.4	18
463	Quantitative dissociation between EGF effects onc-myc andc-fos gene expression, DNA synthesis, and epidermal growth factor receptor tyrosine kinase activity. Journal of Cellular Physiology, 1992, 150, 180-187.	2.0	18
464	Pyruvate induces torpor in obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 810-815.	3.3	18
465	Insulin: A pacesetter for the shape of modern biomedical science and the Nobel Prize. Molecular Metabolism, 2021, 52, 101194.	3.0	18
466	Heterogeneity of Expression and Secretion of Native and Mutant [Asp ^{B10}]Insulin in AtT20 Cells. Molecular Endocrinology, 1991, 5, 319-326.	3.7	17
467	Insulin Substrates 1 and 2 Are Corequired for Activation of Atypical Protein Kinase C and Cbl-Dependent Phosphatidylinositol 3-Kinase during Insulin Action in Immortalized Brown Adipocytesâ€. Biochemistry, 2004, 43, 15503-15509.	1.2	17
468	Fatty liver disease: is it nonalcoholic fatty liver disease or obesity-associated fatty liver disease?. European Journal of Gastroenterology and Hepatology, 2019, 31, 143-143.	0.8	17

#	Article	IF	CITATIONS
469	Congenital hypothyroidism in a young man with growth hormone, thyrotropin, and prolactin deficiencies. Journal of Pediatrics, 1976, 88, 953-958.	0.9	16
470	Insulin Receptor Messenger Ribonucleic Acid Sequence Alterations Detected by Ribonuclease Cleavage in Patients with Syndromes of Insulin Resistance*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 15-24.	1.8	16
471	A family of polypeptide substrates and inhibitors of insulin receptor kinase. Biochemistry, 1990, 29, 3654-3660.	1.2	16
472	Mice Carrying a Dominant-Negative Human PI3K Mutation Are Protected From Obesity and Hepatic Steatosis but Not Diabetes. Diabetes, 2018, 67, 1297-1309.	0.3	16
473	Insulin induces the phosphorylation of DNA-binding nuclear proteins including lamins in 3T3-F442A. Biochemistry, 1992, 31, 9940-9946.	1.2	15
474	Modulation of expression of insulin and IGF-I receptor by Epstein-Barr virus and its gene products LMP and EBNA-2 in lymphocyte cell lines. Journal of Cellular Physiology, 1993, 154, 486-495.	2.0	15
475	Molecular Scanning of β-3-Adrenergic Receptor Gene in Total Congenital Lipoatrophic Diabetes Mellitus*. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3395-3398.	1.8	15
476	Receptor Antibodies as Novel Therapeutics for Diabetes. Science Translational Medicine, 2011, 3, 113ps47.	5.8	15
477	Severe Insulin Resistance Alters Metabolism in Mesenchymal Progenitor Cells. Endocrinology, 2015, 156, 2039-2048.	1.4	15
478	Mucosal absorption of therapeutic peptides by harnessing the endogenous sorting of glycosphingolipids. ELife, 2018, 7, .	2.8	15
479	Membrane metallo-endopeptidase (Neprilysin) regulates inflammatory response and insulin signaling in white preadipocytes. Molecular Metabolism, 2019, 22, 21-36.	3.0	15
480	miRNA-22 deletion limits white adipose expansion and activates brown fat to attenuate high-fat diet-induced fat mass accumulation. Metabolism: Clinical and Experimental, 2021, 117, 154723.	1.5	15
481	Cross-talk between Phorbol Ester-mediated Signaling and Tyrosine Kinase Proto-oncogenes. Journal of Biological Chemistry, 1997, 272, 31182-31189.	1.6	14
482	Differential roles of FOXO transcription factors on insulin action in brown and white adipose tissue. Journal of Clinical Investigation, 2021, 131, .	3.9	14
483	Transmembrane Domain Inversion Blocks ER Release and Insulin Receptor Signaling. Biochemistry, 1995, 34, 946-954.	1.2	13
484	IRS-1 transgenic mice show increased epididymal fat mass and insulin resistance. Biochemical and Biophysical Research Communications, 2007, 364, 301-307.	1.0	13
485	Characterization of viral insulins reveals white adipose tissue-specific effects in mice. Molecular Metabolism, 2021, 44, 101121.	3.0	13
486	Endogenous Peroxisome Proliferator-Activated Receptor-Î ³ Augments Fatty Acid Uptake in Oxidative Muscle. Endocrinology, 2008, 149, 5374-5383.	1.4	12

ARTICLE IF CITATIONS Genetic models of Insulin Resistance: Alterations in Î²-cell biology. Growth Hormone, 2001, , 299-323. The Insulin Receptor Protein Kinase., 1985, , 67-93. 488 12 Insulin Receptor Carbohydrate Units Contain Poly-<i>N</i>-Acetyllactosamine Chains*. Endocrinology, 1.4 1990, 127, 1887-1895. Common and Distinct Elements in Insulin and PDGF Signaling. Annals of the New York Academy of 490 1.8 11 Sciences, 1995, 766, 369-386. Iris Malformation and Anterior Segment Dysgenesis in Mice and Humans With a Mutation in PI 3-Kinase. , 2017, 58, 3100. Muscle-Specific Insulin Receptor Overexpression Protects Mice From Diet-Induced Glucose 492 0.3 11 Intolerance but Leads to Postreceptor Insulin Resistance. Diabetes, 2020, 69, 2294-2309. Insulin Action in the Brain and the Pathogenesis of Alzheimer's Disease. Research and Perspectives in 0.1 Alzheimer's Disease, 2010, , 1-20. Effect of Insulin on Growth in Vivo and Cells in Culture., 1985, , 201-249. 494 11 Hormone Resistance and Hormone Sensitivity. New England Journal of Medicine, 1977, 296, 277-278. Differential Effects of Viral Infection on Islet and Pituitary Cell Lines*. Endocrinology, 1985, 116, 496 1.4 10 2430-2437. Approaches to the molecular cloning of protein-tyrosine phosphatases in insulin-sensitive tissues. 1.4 10 Molecular and Cellular Biochemistry, 1992, 109, 107-13. Altered pattern of circulating miRNAs in HIV lipodystrophy perturbs key adipose differentiation and 498 2.3 10 inflammation pathways. JCI Insight, 2021, 6, . Adipocyte Microenvironment: Everybody in the Neighborhood Talks about the Temperature. Cell 499 7.2 Metabólism, 2021, 33, 4-6. Transfer of heritable properties by cell cybridization: Specificity and the role of selective pressure. 500 2.7 9 Somatic Cell Genetics, 1981, 7, 547-565. Ephs and Ephrins Keep Pancreatic ^î² Cells Connected. Cell, 2007, 129, 241-243. Identification of two microRNA nodes as potential cooperative modulators of liver metabolism. 502 1.8 9 Hepatology Research, 2019, 49, 1451-1465. The insulin receptor goes nuclear. Cell Research, 2019, 29, 509-511. 5.7 A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Molecular 504 3.0 9 Metabolism, 2021, 53, 101316.

#	Article	IF	CITATIONS
505	Glucagon regulation of amino acid transport in hepatocytes: Effect of cell enucleation. Journal of Cellular Physiology, 1983, 115, 186-190.	2.0	8
506	Phosphorylation of the solubilized insulin receptor by the gene product of the Rous sarcoma virus, pp60src. Journal of Cellular Biochemistry, 1984, 26, 169-179.	1.2	8
507	Epidermal growth factor stimulated phosphorylation of a 120-kilodalton endogenous substrate protein in rat hepatocytes. Biochemistry, 1990, 29, 9489-9494.	1.2	8
508	Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury. JCI Insight, 2021, 6, .	2.3	8
509	Positive and Negative Regulation of Phosphoinositide 3-Kinase-Dependent Signaling Pathways by Three Different Gene Products of the p851± Regulatory Subunit. Molecular and Cellular Biology, 2000, 20, 8035-8046.	1.1	8
510	Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. Journal of Clinical Investigation, 2016, 126, 4387-4387.	3.9	8
511	The Gordon Wilson Lecture. Lessons about the control of glucose homeostasis and the pathogenesis of diabetes from knockout mice. Transactions of the American Clinical and Climatological Association, 2003, 114, 125-48.	0.9	8
512	Inhibition of the PI 3â€kinase pathway disrupts the unfolded protein response and reduces sensitivity to ER stressâ€dependent apoptosis. FASEB Journal, 2020, 34, 12521-12532.	0.2	7
513	"100 Years of progress in understanding insulin, its mechanism of action, and its roles in disease and diabetes therapy― Molecular Metabolism, 2021, 52, 101318.	3.0	7
514	Autoantibodies to Insulin Receptors in Man: Immunological Determinants and Mechanism of Action. Novartis Foundation Symposium, 1982, , 91-113.	1.2	7
515	Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling Journal of Biological Chemistry, 2017, 292, 5608.	1.6	6
516	Gut Microbiota Regulate Pancreatic Growth, Exocrine Function, and Gut Hormones. Diabetes, 2022, 71, 945-960.	0.3	6
517	Insulin Radioreceptor Assay on Murine Splenic Leukocytes and Peripheral Erythrocytes. Endocrinology, 1982, 110, 474-480.	1.4	5
518	Effect of cross-linking agents on insulin associated responses in adipocytes. Canadian Journal of Biochemistry, 1982, 60, 987-1000.	1.4	5
519	Developmental Origin of Fat: Tracking Obesity to Its Source. Cell, 2008, 135, 366.	13.5	5
520	Attenuation of <scp>PKC</scp> δenhances metabolic activity and promotes expansion of blood progenitors. EMBO Journal, 2018, 37, .	3.5	5
521	Transcriptomic Regulation of Muscle Mitochondria and Calcium Signaling by Insulin/IGF-1 Receptors Depends on FoxO Transcription Factors. Frontiers in Physiology, 2021, 12, 779121.	1.3	5
522	A Proposed New Role for the Insurance Industry in Biomedical Research Funding. New England Journal of Medicine, 1984, 310, 257-258.	13.9	4

#	Article	IF	CITATIONS
523	HThe Insulin Receptor: Characterization and Regulation Using Insulin-Antiinsulin Antibody Complexes as a Probe for Flow Cytometry*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 1004-1011.	1.8	4
524	Cell Metabolism: Why, and why now?. Cell Metabolism, 2005, 1, 3.	7.2	4
525	Specific Deletion of Insulin Receptors on Pancreatic Acinar Cells Defines the Insulin-Acinar Axis: Implications for Pancreatic Insufficiency in Diabetes. Gastroenterology, 2011, 140, S-156.	0.6	4
526	White Adipose Tissue. , 2017, , 149-199.		4
527	Antibodies to the Insulin Receptor: Studies of Receptor Structure and Function. , 1984, , 127-162.		4
528	[B17-D-Leucine]Insulin and [B17-Norleucine]Insulin: Synthesis and Biological Properties. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1983, 364, 1615-1626.	1.7	3
529	Augmented desensitization to epidermal growth factor (EGF) immediate actions: A novel mechanism for altered EGF growth response in mutant A431 cells. Journal of Cellular Physiology, 1990, 142, 231-235.	2.0	3
530	Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly. FASEB Journal, 2019, 33, 2241-2251.	0.2	3
531	Brown adipose tissue–specific insulin receptor knockout shows diabetic phenotype without insulin resistance. Journal of Clinical Investigation, 2019, 129, 437-437.	3.9	3
532	Hepatic deletion of p110α and p85α results in insulin resistance despite sustained IRS1-associated phosphatidylinositol kinase activity. F1000Research, 2017, 6, 1600.	0.8	3
533	Identification of Cross Reactive Insulin Immunogenic Epitopes from Commensal Gut Microbes. Diabetes, 2018, 67, .	0.3	3
534	High Baseline Vitamin C Levels Do Not Prevent a Positive Outcome of a Lifestyle Intervention: Response to Thamer et al Diabetes Care, 2010, 33, e17-e17.	4.3	2
535	Bi-directional regulation of brown fat adipogenesis by the insulin receptor Journal of Biological Chemistry, 2016, 291, 27434.	1.6	2
536	Insulin/IGF-1 Signaling Nodes and their Role in Carcinogenesis. Energy Balance and Cancer, 2011, , 53-76.	0.2	2
537	White Adipose Tissue. , 2012, , 71-121.		2
538	Sirt5 Plays a Critical Role in Mitochondrial Protein Acylation and Mitochondrial Metabolic Homeostasis in Brown Fat. Diabetes, 2018, 67, .	0.3	2
539	Leptin therapy for type 1 diabetes gains traction. Nature Medicine, 2010, 16, 380-380.	15.2	1

540 Interview: C. Ronald Kahn. Clinical Chemistry, 2011, 57, 347-354.

1.5 1

#	Article	IF	CITATIONS
541	Turning on Brown Fat and Muscle Metabolism: Hedging Your Bets. Cell, 2012, 151, 248-250.	13.5	1
542	Response to Comment on Ussar et al. Regulation of Glucose Uptake and Enteroendocrine Function by the Intestinal Epithelial Insulin Receptor. Diabetes 2017;66:886–896. Diabetes, 2017, 66, e6-e6.	0.3	1
543	FoxK1/K2 Are New, Important Components of IR and IGF1R Signaling and Control of Cell Proliferation and Metabolism. Diabetes, 2018, 67, .	0.3	1
544	In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. , 1995, , 217-231.		1
545	Hepatic deletion of p110α and p85α results in insulin resistance despite sustained IRS1-associated phosphatidylinositol kinase activity. F1000Research, 2017, 6, 1600.	0.8	1
546	35-OR: Physiological Insulin Regulates Alternative mRNA Splicing in Liver and Muscle at Multiple Levels. Diabetes, 2019, 68, .	0.3	1
547	1725-P: Viral Insulins as Agonists and Antagonists on Insulin/IGF-1 Receptors. Diabetes, 2020, 69, .	0.3	1
548	Antibodies to the Insulin Receptor as Tools in the Study of Receptor Structure and Function. Annals of the New York Academy of Sciences, 1987, 505, 301-312.	1.8	0
549	The Joslin Diabetes Center. Molecular Medicine, 2000, 6, 65-68.	1.9	0
550	Myeloid lineage cell-restricted insulin resistance protects apolipoproteinE-deficient mice against atherosclerosis. Cell Metabolism, 2006, 3, 469.	7.2	0
551	Muscle-specific knockout of PKC-λ impairs glucose transport and induces metabolic and diabetic syndromes. Journal of Clinical Investigation, 2007, 117, 3141-3141.	3.9	0
552	Health care reform — need for less emotion and more science. Journal of Clinical Investigation, 2009, 119, 2856-2857.	3.9	0
553	ANTIBODIES TO INSULIN RECEPTORS: PROBES OF RECEPTOR STRUCTURE AND FUNCTION. , 1978, , 239-247.		0
554	HORMONAL REGULATION OF Na+-DEPENDENT TRANSPORT IN HEPATOCYTES AND HEPATOMA CELLS. , 1982, , 163-174.		0
555	Antibodies to Insulin and Insulin Receptors: Mechanisms of Insulin Resistance. , 1984, , 249-270.		0
556	The Role of Covalent and Non-Covalent Mechanisms in Insulin Receptor Action. , 1990, , 29-38.		0
557	FoxO Transcription Factors Are Critical Regulators of Diabetes-Related Muscle Atrophy. SSRN Electronic Journal, 0, , .	0.4	0
558	Dissection of Insulin-Dependent Pathways in Skeletal Muscle under Physiological and Diabetic Conditions. Diabetes, 2018, 67, .	0.3	0

#	Article	IF	CITATIONS
559	Serum Exosomal Proteins—A New Component of Intercellular Communication in Metabolism. Diabetes, 2018, 67, 354-OR.	0.3	0
560	Modeling the Spectrum of Human Insulin Resistance Using Induced Pluripotent Stem Cells. Diabetes, 2018, 67, .	0.3	0
561	Insulin Acutely Regulates Gene Expression in Brain–A New Potential Major Level of Control of Metabolism and Neurotransmission. Diabetes, 2018, 67, 1792-P.	0.3	0
562	291-OR: Exercise Modulates Glucose Metabolism in Part through Changes in the Gut Microbiome. Diabetes, 2019, 68, 291-OR.	0.3	0
563	1785-P: Mice with Muscle-Specific Insulin Receptor Overexpression Are Protected from Diet-Induced Obesity and Glucose Intolerance but Develop Post-Receptor Insulin Resistance. Diabetes, 2019, 68, .	0.3	0
564	1805-P: Insulin Regulates a Broad Network of Gene Expression in the Brain to Regulated Brain Metabolism and Neurotransmission. Diabetes, 2019, 68, 1805-P.	0.3	0
565	187-OR: Gut Microbiota Regulate Pancreatic Growth, Exocrine Function, and Gut Hormones. Diabetes, 2019, 68, 187-OR.	0.3	0
566	1733-P: Phosphoproteomic Analysis of Insulin Action Using Human IPS-Derived Myoblasts Reveals Important Interactions between Differences Based on Insulin Sensitivity and Sex. Diabetes, 2020, 69, 1733-P.	0.3	0
567	1737-P: Defining Distinct Actions of Insulin and IGF1 Receptors and Their Extra and Intracellular Domains at the Level of the Phosphoproteome. Diabetes, 2020, 69, .	0.3	0
568	298-OR: Disruption of Multiple Cell-Autonomous Protein Phosphorylation Networks Underlies Muscle Insulin Resistance in Type 2 Diabetes. Diabetes, 2020, 69, 298-OR.	0.3	0
569	207-OR: Liver-Preadipocyte Cross Talk Reverses Lipodystrophy-Induced Insulin Resistance. Diabetes, 2020, 69, .	0.3	0