List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	USP17 is required for peripheral trafficking of lysosomes. EMBO Reports, 2022, 23, e51932.	2.0	8
2	Enhanced target-specific delivery of docetaxel-loaded nanoparticles using engineered T cell receptors. Nanoscale, 2021, 13, 15010-15020.	2.8	5
3	Antibody therapy in pancreatic cancer: mAb-ye we're onto something?. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188557.	3.3	6
4	Development of next generation nanomedicine-based approaches for the treatment of cancer: we've barely scratched the surface. Biochemical Society Transactions, 2021, 49, 2253-2269.	1.6	7
5	Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers, 2021, 13, 6175.	1.7	20
6	Trafficking of Full-Length and N-Terminally Truncated Cathepsin B in Human Colorectal Carcinoma Cells. Applied Sciences (Switzerland), 2021, 11, 11936.	1.3	2
7	Star polymers with acid-labile diacetal-based cores synthesized by aqueous RAFT polymerization for intracellular DNA delivery. Polymer Chemistry, 2020, 11, 344-357.	1.9	25
8	Anti-DLL4 VNAR targeted nanoparticles for targeting of both tumour and tumour associated vasculature. Nanoscale, 2020, 12, 14751-14763.	2.8	14
9	Procathepsin V Is Secreted in a TSH Regulated Manner from Human Thyroid Epithelial Cells and Is Accessible to an Activity-Based Probe. International Journal of Molecular Sciences, 2020, 21, 9140.	1.8	5
10	Controlled coupling of an ultrapotent auristatin warhead to cetuximab yields a next-generation antibody-drug conjugate for EGFR-targeted therapy of KRAS mutant pancreatic cancer. British Journal of Cancer, 2020, 123, 1502-1512.	2.9	14
11	Cathepsin V suppresses GATA3 protein expression in luminal A breast cancer. Breast Cancer Research, 2020, 22, 139.	2.2	20
12	Significance of nuclear cathepsin V in normal thyroid epithelial and carcinoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118846.	1.9	13
13	RALB GTPase: a critical regulator of DR5 expression and TRAIL sensitivity in KRAS mutant colorectal cancer. Cell Death and Disease, 2020, 11, 930.	2.7	12
14	Refined construction of antibody-targeted nanoparticles leads to superior antigen binding and enhanced delivery of an entrapped payload to pancreatic cancer cells. Nanoscale, 2020, 12, 11647-11658.	2.8	16
15	DR5-targeted, chemotherapeutic drug-loaded nanoparticles induce apoptosis and tumor regression in pancreatic cancer in vivo models. Journal of Controlled Release, 2020, 324, 610-619.	4.8	18
16	Leading the invasion: The role of Cathepsin S in the tumour microenvironment. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118781.	1.9	20
17	A revised model of <scp>TRAIL</scp> â€R2 <scp>DISC</scp> assembly explains how <scp>FLIP</scp> (L) can inhibit or promote apoptosis. EMBO Reports, 2020, 21, e49254.	2.0	36
18	Alginate/Chitosan Particle-Based Drug Delivery Systems for Pulmonary Applications. Pharmaceutics, 2019, 11, 379.	2.0	34

#	Article	IF	CITATIONS
19	A Novel Role for Cathepsin S as a Potential Biomarker in Triple Negative Breast Cancer. Journal of Oncology, 2019, 2019, 1-12.	0.6	16
20	Development of an advanced nanoformulation for the intracellular delivery of a caspase-3 selective activity-based probe. Nanoscale, 2019, 11, 742-751.	2.8	6
21	Targeting of cathepsin S reduces cystic fibrosis-like lung disease. European Respiratory Journal, 2019, 53, 1801523.	3.1	31
22	Oriented attachment of V _{NAR} proteins, <i>via</i> site-selective modification, on PLGA–PEG nanoparticles enhances nanoconjugate performance. Chemical Communications, 2019, 55, 7671-7674.	2.2	16
23	Application of nanotechnology to target and exploit tumour associated proteases. Biochimie, 2019, 166, 112-131.	1.3	7
24	Identification and SAR exploration of a novel series of Legumain inhibitors. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1546-1548.	1.0	4
25	Imaging of extracellular cathepsin S activity by a selective near infrared fluorescence substrate-based probe. Biochimie, 2019, 166, 84-93.	1.3	10
26	Repurposing of Cetuximab in antibody-directed chemotherapy-loaded nanoparticles in EGFR therapy-resistant pancreatic tumours. Nanoscale, 2019, 11, 20261-20273.	2.8	37
27	Clearance of intracellular Klebsiella pneumoniae infection using gentamicin-loaded nanoparticles. Journal of Controlled Release, 2018, 279, 316-325.	4.8	44
28	Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments. Chemical Science, 2018, 9, 79-87.	3.7	79
29	USP17 is required for trafficking and oncogenic signaling of mutant EGFR in NSCLC cells. Cell Communication and Signaling, 2018, 16, 77.	2.7	12
30	Antibody conjugated nanoparticles as a novel form of antibody drug conjugate chemotherapy. Drug Discovery Today: Technologies, 2018, 30, 63-69.	4.0	61
31	Nanodelivery strategies for the treatment of multidrugâ€resistant bacterial infections. Journal of Interdisciplinary Nanomedicine, 2018, 3, 111-121.	3.6	22
32	Single-Domain Antibody-Functionalized pH-Responsive Amphiphilic Block Copolymer Nanoparticles for Epidermal Growth Factor Receptor Targeted Cancer Therapy. ACS Macro Letters, 2018, 7, 1010-1015.	2.3	12
33	Isolation and Characterisation of a Halotolerant ωâ€Transaminase from a Triassic Period Salt Mine and Its Application to Biocatalysis. ChemistrySelect, 2017, 2, 9783-9791.	0.7	16
34	Deubiquitylating enzymes in receptor endocytosis and trafficking. Biochemical Journal, 2016, 473, 4507-4525.	1.7	19
35	The application of a novel, cell permeable activity-based probe for the detection of cysteine cathepsins. Biochemical and Biophysical Research Communications, 2016, 472, 444-450.	1.0	3
36	Encapsulation of the p38 MAPK inhibitor GSK 678361A in nanoparticles for inflammatoryâ€based disease states. Journal of Interdisciplinary Nanomedicine, 2016, 1, 85-92.	3.6	7

#	Article	IF	CITATIONS
37	A bioavailable cathepsin S nitrile inhibitor abrogates tumor development. Molecular Cancer, 2016, 15, 29.	7.9	28
38	<scp>IL</scp> â€1α and inflammasomeâ€independent <scp>IL</scp> â€1β promote neutrophil infiltration following alum vaccination. FEBS Journal, 2016, 283, 9-24.	2.2	60
39	Strategies for detection and quantification of cysteine cathepsins-evolution from bench to bedside. Biochimie, 2016, 122, 48-61.	1.3	12
40	Cathepsin S: therapeutic, diagnostic, and prognostic potential. Biological Chemistry, 2015, 396, 867-882.	1.2	151
41	Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages. Particle and Fibre Toxicology, 2015, 13, 19.	2.8	35
42	Hepatocyte- Specific Deletion of ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator) Results in Altered Fibrotic Gene Expression in the Thioacetamide Model of Liver Injury. PLoS ONE, 2015, 10, e0121650.	1.1	8
43	Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: Formulation, characterisation and functionalisation with dornase alfa (DNase). Journal of Controlled Release, 2015, 198, 55-61.	4.8	122
44	Targeting Siglecs with a sialic acid–decorated nanoparticle abrogates inflammation. Science Translational Medicine, 2015, 7, 303ra140.	5.8	142
45	Development of a potent and selective cell penetrant Legumain inhibitor. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 5642-5645.	1.0	14
46	Dissolving Microneedle Delivery of Nanoparticle-Encapsulated Antigen Elicits Efficient Cross-Priming and Th1 Immune Responses by Murine Langerhans Cells. Journal of Investigative Dermatology, 2015, 135, 425-434.	0.3	78
47	CCL2 is transcriptionally controlled by the lysosomal protease cathepsin S in a CD74-dependent manner. Oncotarget, 2015, 6, 29725-29739.	0.8	27
48	Reduction of ARNT in myeloid cells causes immune suppression and delayed wound healing. American Journal of Physiology - Cell Physiology, 2014, 307, C349-C357.	2.1	17
49	A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochemical Journal, 2014, 457, 289-300.	1.7	16
50	P3 SAR exploration of biphenyl carbamate based Legumain inhibitors. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2521-2524.	1.0	9
51	Efficient Drug Delivery and Induction of Apoptosis in Colorectal Tumors Using a Death Receptor 5-Targeted Nanomedicine. Molecular Therapy, 2014, 22, 2083-2092.	3.7	37
52	USP17 is required for clathrin mediated endocytosis of epidermal growth factor receptor. Oncotarget, 2014, 5, 6964-6975.	0.8	13
53	Cathepsin S from both tumor and tumorâ€associated cells promote cancer growth and neovascularization. International Journal of Cancer, 2013, 133, 2102-2112.	2.3	80

54 USP17-like Peptidase/DUB3 Peptidase. , 2013, , 2100-2103.

#	Article	IF	CITATIONS
55	Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. International Journal of Nanomedicine, 2012, 7, 4053.	3.3	86
56	Antibody-targeted nanoparticles for cancer therapy. Immunotherapy, 2011, 3, 381-394.	1.0	140
57	Conatumumab (AMG 655) coated nanoparticles for targeted pro-apoptotic drug delivery. Biomaterials, 2011, 32, 8645-8653.	5.7	62
58	The Emerging Relevance of the Cysteine Protease Cathepsin S in Disease. Clinical Reviews in Bone and Mineral Metabolism, 2011, 9, 122-132.	1.3	23
59	Synthesis of an analogue of the bisphosphonate drug Ibandronate for targeted drug-delivery therapeutic strategies. New Journal of Chemistry, 2010, 34, 949.	1.4	5
60	Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials, 2010, 31, 4214-4222.	5.7	51
61	Biologic protease inhibitors as novel therapeutic agents. Biochimie, 2010, 92, 1681-1688.	1.3	66
62	A Novel High-Throughput Technique for Identifying Monoclonal Antibodies capable of Death Receptor Induced Apoptosis. Journal of Cell Death, 2009, 2, JCD.S3660.	0.8	0
63	Antibody-Mediated Inhibition of Cathepsin S Blocks Colorectal Tumor Invasion and Angiogenesis. Clinical Cancer Research, 2009, 15, 6042-6051.	3.2	95
64	Immunocolloidal Targeting of the Endocytotic Siglec-7 Receptor Using Peripheral Attachment of Siglec-7 Antibodies to Poly(Lactide-co-Glycolide) Nanoparticles. Pharmaceutical Research, 2008, 25, 135-146.	1.7	43
65	Activity-based selection of a proteolytic species using ribosome display. Biochemical and Biophysical Research Communications, 2008, 370, 77-81.	1.0	8
66	Antibody Targeting of Camptothecin-Loaded PLGA Nanoparticles to Tumor Cells. Bioconjugate Chemistry, 2008, 19, 1561-1569.	1.8	111
67	Cathepsin S expression: An independent prognostic factor in glioblastoma tumours—a pilot study. International Journal of Cancer, 2006, 119, 854-860.	2.3	78
68	Irreversible inhibition of the bacterial cysteine protease-transpeptidase sortase (SrtA) by substrate-derived affinity labels. Biochemical Journal, 2002, 366, 953-958.	1.7	75
69	Protein disulfide isomerase-mediated cell-free assembly of recombinant interleukin-12 p40 homodimers. FEBS Journal, 2000, 267, 6679-6683.	0.2	15