
Subhas Chandra Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023355/publications.pdf Version: 2024-02-01

<u> Shirhas Chandra Dan</u>

#	Article	IF	CITATIONS
1	Organocatalytic C–H activation reactions. Beilstein Journal of Organic Chemistry, 2012, 8, 1374-1384.	2.2	137
2	Catalytic Asymmetric Acylcyanation of Imines. Angewandte Chemie - International Edition, 2007, 46, 612-614.	13.8	131
3	Catalytic Threeâ€Component Ugi Reaction. Angewandte Chemie - International Edition, 2008, 47, 3622-3625.	13.8	130
4	Catalytic Asymmetric Three-Component Acyl-Strecker Reaction. Organic Letters, 2007, 9, 1149-1151.	4.6	106
5	The Catalytic Asymmetric αâ€Benzylation of Aldehydes. Angewandte Chemie - International Edition, 2014, 53, 282-285.	13.8	83
6	The Catalytic Acylcyanation of Imines. Chemistry - an Asian Journal, 2008, 3, 430-437.	3.3	68
7	Total Synthesis of the Novel, Biologically Active Epoxyquinone Dimer (±)-Torreyanic Acid:  A Biomimetic Approach. Organic Letters, 2004, 6, 3985-3988.	4.6	58
8	Organocatalytic Asymmetric Michael/Hemiketalization/Retro-aldol Reaction of α-Nitroketones with Unsaturated Pyrazolones: Synthesis of 3-Acyloxy Pyrazoles. Organic Letters, 2017, 19, 662-665.	4.6	52
9	Organocatalytic asymmetric Michael/hemiacetalization/acyl transfer reaction of α-nitroketones with <i>o</i> -hydroxycinnamaldehydes: synthesis of 2,4-disubstituted chromans. Organic and Biomolecular Chemistry, 2018, 16, 1598-1608.	2.8	37
10	Total Synthesis of the Novel Antifungal Agent (±)-Jesterone. Organic Letters, 2004, 6, 811-813.	4.6	36
11	<i>n</i> Bu ₄ Nl atalyzed αâ€Benzoxylation of Ketones with Terminal Aryl Alkenes. European Journal of Organic Chemistry, 2015, 2015, 3135-3140.	2.4	36
12	Highly Diastereo- and Enantioselective Synthesis of Spiro-tetrahydrofuran-pyrazolones via Organocatalytic Cascade Reaction between γ-Hydroxyenones and Unsaturated Pyrazolones. Journal of Organic Chemistry, 2018, 83, 8645-8654.	3.2	32
13	Organocatalytic Redox Isomerization of Electron-Deficient Allylic Alcohols: Synthesis of 1,4-Ketoaldehydes. Journal of Organic Chemistry, 2016, 81, 4835-4840.	3.2	31
14	Chiral phosphoric acid catalyzed enantioselective annulation of acyclic enecarbamates to in situ-generated ortho-quinone methides. Organic and Biomolecular Chemistry, 2017, 15, 7272-7276.	2.8	31
15	Lewis Acid Catalyzed [3+3] Annulation of Donor–Acceptor Cyclopropanes with γâ€Hydroxyenones: Access to Highly Functionalized Tetrahydropyrans. European Journal of Organic Chemistry, 2017, 2017, 534-537.	2.4	26
16	Organocatalytic asymmetric synthesis of 2,4-disubstituted imidazolidines <i>via</i> domino addition-aza-Michael reaction. Chemical Communications, 2018, 54, 964-967.	4.1	25
17	Applications of Bifunctional Organocatalysts on <i>ortho</i> â€Quinone Methides. Asian Journal of Organic Chemistry, 2019, 8, 1970-1984.	2.7	25
18	Organocatalytic Asymmetric Synthesis of Tetrahydrothiophenes and Tetrahydrothiopyrans. European Journal of Organic Chemistry, 2017, 2017, 4666-4677.	2.4	24

#	Article	IF	CITATIONS
19	Organocatalytic Asymmetric Domino Michael/Acyl Transfer Reaction Between <i>î±</i> â€Nitroketones and <i>inâ€situâ€</i> Generated <i>ortho</i> â€Quinone Methides: Route to 2â€(1â€Arylethyl)phenols. Advanced Synthesis and Catalysis, 2018, 360, 4502-4508.	4.3	24
20	Organocatalytic Asymmetric Domino Michael/Acyl Transfer Reaction between γ∬î-Hydroxyenones and α-Nitroketones. Journal of Organic Chemistry, 2018, 83, 5301-5312.	3.2	21
21	Organocatalytic Asymmetric Synthesis of Bridged Acetals with Spirooxindole Skeleton. Journal of Organic Chemistry, 2018, 83, 14703-14712.	3.2	21
22	First total synthesis of yanuthones: novel farnesylated epoxycyclohexenoid marine natural products. Tetrahedron Letters, 2005, 46, 5219-5223.	1.4	20
23	Organocatalytic Asymmetric Tamura Cycloaddition with α- Branched Nitroolefins: Synthesis of Functionalized 1-Tetralones. Journal of Organic Chemistry, 2017, 82, 3262-3269.	3.2	19
24	A total synthesis of the epoxyquinone based antifungal natural product (±)-ambuic acid. Tetrahedron Letters, 2005, 46, 3045-3048.	1.4	18
25	Enantioselective aminocatalytic synthesis of tetrahydropyrano[2,3-c]pyrazoles via a domino Michael-hemiacetalization reaction with alkylidene pyrazolones. Organic and Biomolecular Chemistry, 2017, 15, 8032-8036.	2.8	18
26	Employment of α-nitroketones in organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 5190-5211.	2.8	18
27	Diastereoselective Desymmetrization of Prochiral Cyclopentenediones via Cycloaddition Reaction with <i>N</i> -Phenacylbenzothiazolium Bromides. Journal of Organic Chemistry, 2017, 82, 12763-12770.	3.2	17
28	Organocatalytic Asymmetric Synthesis of 2,5â€Disubstituted Oxazolidines. Advanced Synthesis and Catalysis, 2019, 361, 1028-1032.	4.3	17
29	Organocatalytic asymmetric synthesis of dihydrofuran-spirooxindoles from benzylidene malononitriles and dioxindoles. Organic and Biomolecular Chemistry, 2019, 17, 6557-6561.	2.8	16
30	Primary amino acid catalyzed asymmetric intramolecular Mannich reaction for the synthesis of 2-aryl-2,3-dihydro-4-quinolones. Organic and Biomolecular Chemistry, 2014, 12, 9789-9792.	2.8	15
31	Dienamineâ€Mediated Asymmetric Inverseâ€Electronâ€Demand Heteroâ€Diels–Alder Reaction of Linear Deconjugated Enones: Diversityâ€Oriented Synthesis of 3,4â€Dihydropyrans. European Journal of Organic Chemistry, 2017, 2017, 871-874.	2.4	15
32	α-Nitro-α,β-Unsaturated Ketones: An Electrophilic Acyl Transfer Reagent in Catalytic Asymmetric Friedel–Crafts and Michael Reactions. Organic Letters, 2019, 21, 6700-6704.	4.6	15
33	Copper(I)â€Catalyzed (<i>Z</i>)â€Î²â€(Tosyloxy)alkenyl Iodide Synthesis from (Aryl)[(<i>E</i>)â€Î²â€(tosyloxy)alkenyl]iodonium Tosylates: Diversityâ€Oriented Synthesis of Trisubstituted Alkenes. European Journal of Organic Chemistry, 2015, 2015, 2129-2132.	2.4	14
34	Organocatalytic Asymmetric Synthesis of Pentasubstituted Tetrahydrothiopyrans Bearing a Quaternary Centre through a Double Michael Reaction. Synlett, 2018, 29, 576-580.	1.8	14
35	Synthesis of 2,5-Disubstituted Furans from Sc(OTf) ₃ Catalyzed Reaction of Aryl Oxiranediesters with γ-Hydroxyenones. Journal of Organic Chemistry, 2017, 82, 4415-4421.	3.2	13
36	Organocatalytic Asymmetric Synthesis of 3,3â€Disubstituted 3,4â€Dihydroâ€2â€quinolones. Advanced Synthesis	⁵ 4.3	13

and Catalysis, 2017, 359, 3911-3916.

13

Subhas Chandra Pan

#	Article	IF	CITATIONS
37	Organocatalytic Asymmetric Synthesis of Highly Substituted Tetrahydrofurans and Tetrahydropyrans via Double Michael Addition Strategy. Asian Journal of Organic Chemistry, 2018, 7, 1788-1792.	2.7	13
38	Catalytic Enantioselective Synthesis of 3,4,5â€Trisubstituted Isoxazoline <i>N</i> â€Oxides and Regioselective Synthesis of 3,4,5â€Trisubstituted Isoxazoles. European Journal of Organic Chemistry, 2019, 2019, 1385-1389.	2.4	13
39	DMAP Catalyzed Domino Rauhut–Currier Cyclization Reaction between Alkylidene Pyrazolones and Nitro-olefins: Access to Tetrahydropyrano[2,3- <i>c</i>]pyrazoles. Journal of Organic Chemistry, 2021, 86, 4304-4312.	3.2	13
40	An organocatalytic asymmetric Mannich reaction for the synthesis of 3,3-disubstituted-3,4-dihydro-2-quinolones. Organic and Biomolecular Chemistry, 2018, 16, 5407-5411.	2.8	12
41	Organocatalytic asymmetric Michael/hemiketalization/acyl transfer reaction of 1,3-propanediones with (<i>E</i>)-2-(2-nitrovinyl)phenols. Organic and Biomolecular Chemistry, 2019, 17, 1718-1721.	2.8	11
42	Convergent Synthesis and Discovery of a Natural Product-Inspired Paralog-Selective Hsp90 Inhibitor. Organic Letters, 2011, 13, 5108-5111.	4.6	10
43	Organocatalytic asymmetric intramolecular aza-Henry reaction: facile synthesis of trans-2,3-disubstituted tetrahydroquinolines. Organic and Biomolecular Chemistry, 2015, 13, 6825-6831.	2.8	10
44	Organocatalytic Asymmetric Cascade Reaction between <i>o</i> â€Hydroxycinnamaldehydes and <i>l³</i> /i>l´â€Hydroxyenones: A Route to Tetrahydrofuran/Tetrahydropyranâ€Fused 3,4â€Dihydrocoumarins. Advanced Synthesis and Catalysis, 2018, 360, 4348-4353.	4.3	10
45	Organocatalytic Asymmetric Synthesis of Bridged <i>O</i> , <i>O</i> â€Ketals with Spirooxindole Motif. European Journal of Organic Chemistry, 2019, 2019, 2552-2559.	2.4	10
46	DBU-Mediated Addition of α-Nitroketones to α-Cyano-enones and α,β-Unsaturated α-Ketoesters: Synthesis of Dihydrofurans and Conjugated Dienes. ACS Omega, 2019, 4, 2792-2803.	3.5	10
47	Organocatalytic Asymmetric Michael–Acyl Transfer Reaction of αâ€Nitroketones with 2â€Hydroxybenzylidene Ketones. European Journal of Organic Chemistry, 2019, 2019, 2297-2304.	2.4	10
48	Enantioselective syntheses of bioactive epoxyquinone natural products (+)-harveynone and (â^`)-asperpentyn. Tetrahedron Letters, 2012, 53, 4093-4095.	1.4	9
49	Organocatalytic Asymmetric Michael-Hemiacetalization Reaction Between 2-Hydroxyacetophenones and Enals: A Route to Chiral l²,l³-Disubstituted l³-Butyrolactones. Journal of Organic Chemistry, 2017, 82, 6409-6416.	3.2	9
50	Organocatalytic Asymmetric Dimerization of γâ€Hydroxyenones to Acetals and Theoretical Investigations into the Diastereoselection. European Journal of Organic Chemistry, 2017, 2017, 7101-7106.	2.4	9
51	Nonenzymatic Dynamic Kinetic Resolution of <i>inâ€situ</i> Generated Hemithioacetals: Access to 1,3â€Disubstituted Phthalans. Advanced Synthesis and Catalysis, 2018, 360, 1628-1633.	4.3	9
52	Organocatalytic asymmetric spirocyclization reactions of cyclic 2,4-dienones with cyanoketones: synthesis of spiro-dihydropyrano cyclohexanones. Organic and Biomolecular Chemistry, 2019, 17, 7849-7853.	2.8	9
53	Organocatalytic Asymmetric Synthesis of Spirooxindole Embedded Oxazolidines. Journal of Organic Chemistry, 2021, 86, 13082-13091.	3.2	9
54	Organocatalytic Asymmetric Synthesis of Cyclic Acetals with Spirooxindole Skeleton. Advanced Synthesis and Catalysis, 2022, 364, 58-63.	4.3	9

Subhas Chandra Pan

#	Article	IF	CITATIONS
55	Organocatalytic asymmetric Michael addition of 1-acetylcyclohexene and 1-acetylcyclopentene to nitroolefins. Organic and Biomolecular Chemistry, 2015, 13, 7076-7083.	2.8	8
56	Direct Aerobic Oxidative Reactions of 2â€Hydroxyacetophenones. European Journal of Organic Chemistry, 2017, 2017, 4434-4438.	2.4	8
57	Organocatalytic asymmetric synthesis of highly substituted pyrrolidines bearing a stereogenic quaternary centre at the 3-position. Organic and Biomolecular Chemistry, 2018, 16, 9349-9353.	2.8	8
58	Synthesis of <i>N</i> -Formyl-2-benzoyl Benzothiazolines, 2-Substituted Benzothiazoles, and Symmetrical Disulfides from <i>N</i> -Phenacylbenzothiazolium Bromides. Organic Letters, 2019, 21, 6208-6212.	4.6	7
59	Organocatalytic Asymmetric Addition of Aromatic α-Cyanoketones to <i>o</i> -Quinone Methides: Synthesis of 3,4-Dihydrocoumarins and Tetrasubstituted Chromans. Journal of Organic Chemistry, 2021, 86, 13071-13081.	3.2	6
60	Catalytic Acylcyanation of Imines with Acetylcyanide. Synlett, 2006, 2006, 3275-3276.	1.8	5
61	Organocatalytic asymmetric Michael/acyl transfer reaction between α-nitroketones and 4-arylidenepyrrolidine-2,3-diones. Beilstein Journal of Organic Chemistry, 2021, 17, 1447-1452.	2.2	5
62	Organocatalytic Asymmetric Mannich Reaction of Dihydroâ€3â€carboalkoxyâ€2â€quinolones with Preformed <i>N</i> â€Boc Imines. European Journal of Organic Chemistry, 2019, 2019, 2639-2642.	2.4	4
63	Organocatalytic asymmetric addition of thioglycolates to o-quinone methides: a route to 5-substituted-5H-benzoxathiepine-2(3H)-ones. Organic and Biomolecular Chemistry, 2020, 18, 2828-2833.	2.8	4
64	Catalytic Three omponent Ugi Reaction. Angewandte Chemie - International Edition, 2008, 47, 5490-5490.	13.8	3
65	Organocatalytic Asymmetric Ene Reactions. Asian Journal of Organic Chemistry, 2021, 10, 2440-2453.	2.7	3
66	Organocatalytic Asymmetric [4+2] Cycloaddition of 1â€Acetylcyclopentene and 1â€Acetylcyclohexene for the Synthesis of Fused Carbocycles. European Journal of Organic Chemistry, 2017, 2017, 6457-6461.	2.4	2
67	Organocatalytic Asymmetric Reaction between αâ€Cyano Enones and Dioxindoles: Synthesis of Dihydrofuran‧pirooxindoles. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	2