Je MacÃ-as-DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023137/publications.pdf Version: 2024-02-01

ΙΕ ΜΛΟΔΑς-ΠΔΑΖ

#	Article	IF	CITATIONS
1	A structure-preserving method for a class of nonlinear dissipative wave equations with Riesz space-fractional derivatives. Journal of Computational Physics, 2017, 351, 40-58.	3.8	76
2	Semi-implicit Galerkin–Legendre Spectral Schemes for Nonlinear Time-Space Fractional Diffusion–Reaction Equations with Smooth and Nonsmooth Solutions. Journal of Scientific Computing, 2020, 82, 1.	2.3	71
3	An explicit dissipation-preserving method for Riesz space-fractional nonlinear wave equations in multiple dimensions. Communications in Nonlinear Science and Numerical Simulation, 2018, 59, 67-87.	3.3	58
4	Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 2017, 46, 89-102.	3.3	50
5	A pseudo energy-invariant method for relativistic wave equations with Riesz space-fractional derivatives. Computer Physics Communications, 2018, 224, 98-107.	7.5	46
6	A positive and bounded finite element approximation of the generalized Burgers–Huxley equation. Journal of Mathematical Analysis and Applications, 2015, 424, 1143-1160.	1.0	45
7	Supratransmission in β-Fermi–Pasta–Ulam chains with different ranges of interactions. Communications in Nonlinear Science and Numerical Simulation, 2018, 63, 307-321.	3.3	45
8	Design of a nonlinear model for the propagation of COVID-19 and its efficient nonstandard computational implementation. Applied Mathematical Modelling, 2021, 89, 1835-1846.	4.2	43
9	On the propagation of binary signals in damped mechanical systems of oscillators. Physica D: Nonlinear Phenomena, 2007, 228, 112-121.	2.8	41
10	Numerical simulation of the nonlinear dynamics of harmonically driven Riesz-fractional extensions of the Fermi–Pasta–Ulam chains. Communications in Nonlinear Science and Numerical Simulation, 2018, 55, 248-264.	3.3	39
11	An application of nonlinear supratransmission to the propagation of binary signals in weakly damped, mechanical systems of coupled oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 366, 447-450.	2.1	37
12	Numerical study of the transmission of energy in discrete arrays of sine-Gordon equations in two space dimensions. Physical Review E, 2008, 77, 016602.	2.1	37
13	An explicit positivity-preserving finite-difference scheme for the classical Fisher–Kolmogorov–Petrovsky–Piscounov equation. Applied Mathematics and Computation, 2012, 218, 5829-5837.	2.2	37
14	The numerical solution of a generalized Burgers–Huxley equation through a conditionally bounded and symmetry-preserving method. Computers and Mathematics With Applications, 2011, 61, 3330-3342.	2.7	36
15	A non-standard symmetry-preserving method to compute bounded solutions of a generalized Newell–Whitehead–Segel equation. Applied Numerical Mathematics, 2011, 61, 630-640.	2.1	36
16	A compact fourth-order in space energy-preserving method for Riesz space-fractional nonlinear wave equations. Applied Mathematics and Computation, 2018, 325, 1-14.	2.2	36
17	On the transmission of binary bits in discrete Josephson-junction arrays. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5004-5010.	2.1	35
18	Persistence of nonlinear hysteresis in fractional models of Josephson transmission lines. Communications in Nonlinear Science and Numerical Simulation, 2017, 53, 31-43.	3.3	33

#	Article	IF	CITATIONS
19	A numerically efficient and conservative model for a Riesz space-fractional Klein–Cordon–Zakharov system. Communications in Nonlinear Science and Numerical Simulation, 2019, 71, 22-37.	3.3	33
20	An implicit four-step computational method in the study on the effects of damping in a modified <mml:math <br="" altimg="si45.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mi>î±</mml:mi></mml:mrow></mml:math> -Fermi–Pasta–Ulam medium. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3200-3212.	3.3	32
21	A finite-difference scheme to approximate non-negative and bounded solutions of a FitzHugh–Nagumo equation. International Journal of Computer Mathematics, 2011, 88, 3186-3201.	1.8	32
22	Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization Ã la Mickens of the generalized Burgers–Huxley equation. Journal of Difference Equations and Applications, 2014, 20, 989-1004.	1.1	30
23	Sufficient conditions for the preservation of the boundedness in a numerical method for a physical model with transport memory and nonlinear damping. Computer Physics Communications, 2011, 182, 2471-2478.	7.5	29
24	A deterministic model for the distribution of the stopping time in a stochastic equation and its numerical solution. Journal of Computational and Applied Mathematics, 2017, 318, 93-106.	2.0	29
25	A novel discrete Gronwall inequality in the analysis of difference schemes for time-fractional multi-delayed diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 2019, 73, 110-119.	3.3	29
26	Numerical treatment of the spherically symmetric solutions of a generalized Fisher–Kolmogorov–Petrovsky–Piscounov equation. Journal of Computational and Applied Mathematics, 2009, 231, 851-868.	2.0	28
27	A boundedness-preserving finite-difference scheme for a damped nonlinear wave equation. Applied Numerical Mathematics, 2010, 60, 934-948.	2.1	28
28	A numerical method for computing radially symmetric solutions of a dissipative nonlinear modified Klein-Gordon equation. Numerical Methods for Partial Differential Equations, 2005, 21, 998-1015.	3.6	27
29	A Numerically Efficient Dissipation-Preserving Implicit Method for a Nonlinear Multidimensional Fractional Wave Equation. Journal of Scientific Computing, 2018, 77, 1-26.	2.3	27
30	An energy-based computational method in the analysis of the transmission of energy in a chain of coupled oscillators. Journal of Computational and Applied Mathematics, 2008, 214, 393-405.	2.0	26
31	AN EFFICIENT RECURSIVE ALGORITHM IN THE COMPUTATIONAL SIMULATION OF THE BOUNDED GROWTH OF BIOLOGICAL FILMS. International Journal of Computational Methods, 2012, 09, 1250050.	1.3	26
32	Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus. AIMS Mathematics, 2022, 7, 4266-4292.	1.6	25
33	On the solution of a Riesz space-fractional nonlinear wave equation through an efficient and energy-invariant scheme. International Journal of Computer Mathematics, 2019, 96, 337-361.	1.8	24
34	Analysis and Nonstandard Numerical Design of a Discrete Three-Dimensional Hepatitis B Epidemic Model. Mathematics, 2019, 7, 1157.	2.2	23
35	Hermite-Hadamard Inequalities in Fractional Calculus for Left and Right Harmonically Convex Functions via Interval-Valued Settings. Fractal and Fractional, 2022, 6, 178.	3.3	23
36	A differential quadrature-based approach à la Picard for systems of partial differential equations associated with fuzzy differential equations. Journal of Computational and Applied Mathematics, 2016, 299. 15-23.	2.0	21

#	Article	IF	CITATIONS
37	Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion. Physical Review E, 2018, 97, 032129.	2.1	20
38	Analysis of a nonstandard computer method to simulate a nonlinear stochastic epidemiological model of coronavirus-like diseases. Computer Methods and Programs in Biomedicine, 2021, 204, 106054.	4.7	20
39	A convergent and dynamically consistent finite-difference method to approximate the positive and bounded solutions of the classical Burgers–Fisher equation. Journal of Computational and Applied Mathematics, 2017, 318, 604-615.	2.0	19
40	Convergence and stability estimates in difference setting for timeâ€fractional parabolic equations with functional delay. Numerical Methods for Partial Differential Equations, 2020, 36, 118-132.	3.6	19
41	Numerical modeling and theoretical analysis of a nonlinear advection-reaction epidemic system. Computer Methods and Programs in Biomedicine, 2020, 193, 105429.	4.7	19
42	A numerical method with properties of consistency in the energy domain for a class of dissipative nonlinear wave equations with applications to a Dirichlet boundaryâ€value problem. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2008, 88, 828-846.	1.6	16
43	A modified exponential method that preserves structural properties of the solutions of the Burgers–Huxley equation. International Journal of Computer Mathematics, 2018, 95, 3-19.	1.8	16
44	On the convergence of a finite-difference discretization à la Mickens of the generalized Burgers–Huxley equation. Journal of Difference Equations and Applications, 2014, 20, 1444-1451.	1.1	15
45	Theoretical analysis of an explicit energy-conserving scheme for a fractional Klein–Gordon–Zakharov system. Applied Numerical Mathematics, 2019, 146, 245-259.	2.1	14
46	New sinusoidal basis functions and a neural network approach to solve nonlinear Volterra–Fredholm integral equations. Neural Computing and Applications, 2019, 31, 4865-4878.	5.6	13
47	On the solution of hyperbolic two-dimensional fractional systems via discrete variational schemes of high order of accuracy. Journal of Computational and Applied Mathematics, 2019, 354, 612-622.	2.0	13
48	Note on a Picard-like Method for Caputo Fuzzy Fractional Differential Equations. Applied Mathematics and Information Sciences, 2017, 11, 281-287.	0.5	13
49	Bistability of a two-dimensional Klein-Gordon system as a reliable means to transmit monochromatic waves: A numerical approach. Physical Review E, 2008, 78, 056603.	2.1	12
50	On a boundedness-preserving semi-linear discretization of a two-dimensional nonlinear diffusion–reaction model. International Journal of Computer Mathematics, 2012, 89, 1678-1688.	1.8	12
51	A Mickens-type monotone discretization for bounded travelling-wave solutions of a Burgers–Fisher partial differential equation ^a [*] . Journal of Difference Equations and Applications, 2013, 19, 1907-1920.	1.1	12
52	Highâ€order finite difference/spectralâ€Galerkin approximations for the nonlinear time–space fractional Ginzburg–Landau equation. Numerical Methods for Partial Differential Equations, 2023, 39, 4549-4574.	3.6	12
53	A BOUNDED FINITE-DIFFERENCE DISCRETIZATION OF A TWO-DIMENSIONAL DIFFUSION EQUATION WITH LOGISTIC NONLINEAR REACTION. International Journal of Modern Physics C, 2011, 22, 953-966.	1.7	11
54	A finite-difference scheme in the computational modelling of a coupled substrate-biomass system. International Journal of Computer Mathematics, 2014, 91, 2199-2214.	1.8	11

#	Article	IF	CITATIONS
55	On the General Solutions of Some Non-Homogeneous Div-Curl Systems with Riemann–Liouville and Caputo Fractional Derivatives. Fractal and Fractional, 2021, 5, 117.	3.3	11
56	A computational technique with multiple properties of consistency in the study of modified -Fermi–Pasta–Ulam chains. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 1740-1753.	3.3	10
5 7	On some explicit non-standard methods to approximate nonnegative solutions of a weakly hyperbolic equation with logistic nonlinearity. International Journal of Computer Mathematics, 2011, 88, 3308-3323.	1.8	10
58	A modified Bhattacharya exponential method to approximate positive and bounded solutions of the Burgers–Fisher equation. Journal of Computational and Applied Mathematics, 2017, 318, 366-377.	2.0	10
59	A Discrete Grönwall Inequality and Energy Estimates in the Analysis of a Discrete Model for a Nonlinear Time-Fractional Heat Equation. Mathematics, 2020, 8, 1539.	2.2	10
60	An energy-preserving and efficient scheme for a double-fractional conservative Klein–Gordon–Zakharov system. Applied Numerical Mathematics, 2020, 158, 292-313.	2.1	10
61	Theoretical analysis of a conservative finite-difference scheme to solve a Riesz space-fractional Gross–Pitaevskii system. Journal of Computational and Applied Mathematics, 2022, 404, 113413.	2.0	10
62	Bit propagation in (2+1)-dimensional systems of coupled sine-Gordon equations. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 1025-1031.	3.3	9
63	An efficient nonlinear finite-difference approach in the computational modeling of the dynamics of a nonlinear diffusion-reaction equation in microbial ecology. Computational Biology and Chemistry, 2013, 47, 24-30.	2.3	9
64	On an exact numerical simulation of solitary-wave solutions of the Burgers–Huxley equation through Cardano's method. BIT Numerical Mathematics, 2014, 54, 763-776.	2.0	9
65	A positive finite-difference model in the computational simulation of complex biological film models. Journal of Difference Equations and Applications, 2014, 20, 548-569.	1.1	9
66	On the solution of a generalized Higgs boson equation in the de Sitter space-time through an efficient and Hamiltonian scheme. Journal of Computational Physics, 2020, 417, 109568.	3.8	9
67	Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation. AEJ - Alexandria Engineering Journal, 2022, 61, 7089-7101.	6.4	9
68	Fractional Calculus for Convex Functions in Interval-Valued Settings and Inequalities. Symmetry, 2022, 14, 341.	2.2	9
69	On the simulation of the energy transmission in the forbidden band-gap of a spatially discrete double sine-Gordon system. Computer Physics Communications, 2010, 181, 1842-1849.	7.5	8
70	Activity pattern detection in electroneurographic and electromyogram signals through a heteroscedastic change-point method. Mathematical Biosciences, 2010, 224, 109-117.	1.9	8
71	On the controlled propagation of wave signals in a sinusoidally forced two-dimensional continuous Frenkel–Kontorova model. Wave Motion, 2011, 48, 13-23.	2.0	8
72	Existence of solutions of an explicit energy-conserving scheme for a fractional Klein–Gordon–Zakharov system. Applied Numerical Mathematics, 2020, 151, 40-43.	2.1	8

#	Article	IF	CITATIONS
73	A mathematical model that combines chemotherapy and oncolytic virotherapy as an alternative treatment against a glioma. Journal of Mathematical Chemistry, 2020, 58, 544-554.	1.5	8
74	An Economic Model for OECD Economies with Truncated M-Derivatives: Exact Solutions and Simulations. Mathematics, 2021, 9, 1780.	2.2	8
75	On the wave transmission in a discrete nonlinear left-handed electrical lattice. Waves in Random and Complex Media, 2022, 32, 2718-2728.	2.7	8
76	Some Fuzzy Riemann–Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions. Symmetry, 2022, 14, 313.	2.2	8
77	Design, Analysis and Comparison of a Nonstandard Computational Method for the Solution of a General Stochastic Fractional Epidemic Model. Axioms, 2022, 11, 10.	1.9	8
78	NONLINEAR SUPRATRANSMISSION AND NONLINEAR BISTABILITY IN A FORCED LINEAR ARRAY OF ANHARMONIC OSCILLATORS: A COMPUTATIONAL STUDY. International Journal of Modern Physics C, 2009, 20, 1911-1923.	1.7	7
79	On a fully discrete finite-difference approximation of a nonlinear diffusion–reaction model in microbial ecology. International Journal of Computer Mathematics, 2013, 90, 1915-1937.	1.8	7
80	On <mml:math <br="" altimg="si9.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:msup><mml:mrow><mml:mi>S</mml:mi></mml:mrow><mml:mrow><mml:mn>1as an alternative continuous opinion space in a three-party regime. Journal of Computational and Applied Mathematics, 2017, 318, 230-241.</mml:mn></mml:mrow></mml:msup></mml:math>	nl:mn> 2.0	۱ml:mrow>
81	Novel electromyography signal envelopes based on binary segmentation. Biomedical Signal Processing and Control, 2018, 45, 225-236.	5.7	7
82	Development of Nano-Antifungal Therapy for Systemic and Endemic Mycoses. Journal of Fungi (Basel,) Tj ETQqQ) 0 0 rgBT 3.5	/Overlock 10
83	An implicit semi-linear discretization of a bi-fractional Klein–Gordon–Zakharov system which conserves the total energy. Applied Numerical Mathematics, 2021, 169, 179-200.	2.1	7
84	Nonlinear Supratransmission in Quartic Hamiltonian Lattices With Globally Interacting Particles and On-Site Potentials. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	1.2	7
85	COMPUTATIONAL STUDY OF THE TRANSMISSION OF ENERGY IN A TWO-DIMENSIONAL LATTICE WITH NEAREST-NEIGHBOR INTERACTIONS. International Journal of Modern Physics C, 2009, 20, 1933-1943.	1.7	6
86	Simple numerical method to study travelingâ€wave solutions of a diffusive problem with nonlinear advection and reaction. Numerical Methods for Partial Differential Equations, 2013, 29, 1694-1708.	3.6	6
87	A computational method for the detection of activation/deactivation patterns in biological signals with three levels of electric intensity. Mathematical Biosciences, 2014, 248, 117-127.	1.9	6
88	Existence and Uniqueness of Positive and Bounded Solutions of a Discrete Population Model with Fractional Dynamics. Discrete Dynamics in Nature and Society, 2017, 2017, 1-7.	0.9	6
89	An integral of motion for the damped cubic-quintic Duffing oscillator with variable coefficients. Communications in Nonlinear Science and Numerical Simulation, 2019, 78, 104860.	3.3	6
90	An efficient Hamiltonian numerical model for a fractional Klein–Gordon equation through weighted-shifted Grünwald differences. Journal of Mathematical Chemistry, 2019, 57, 1394-1412.	1.5	6

#	Article	IF	CITATIONS
91	A threshold selection criterion based on the number of runs for the detection of bursts in EMG signals. Biomedical Signal Processing and Control, 2020, 57, 101699.	5.7	6
92	A dissipation-preserving finite-difference scheme for a generalized Higgs boson equation in the de Sitter space–time. Applied Mathematics Letters, 2020, 107, 106425.	2.7	6
93	An Exterior Neumann Boundary-Value Problem for the Div-Curl System and Applications. Mathematics, 2021, 9, 1609.	2.2	6
94	On the Lagrangians and potentials of a two coupled damped Duffing oscillators system and their application on three-node motif networks. Revista Mexicana De FÃsica, 2020, 66, 440-445.	0.4	6
95	Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions. AIMS Mathematics, 2022, 7, 10454-10482.	1.6	6
96	Two finite-difference schemes that preserve the dissipation of energy in a system of modified wave equations. Communications in Nonlinear Science and Numerical Simulation, 2010, 15, 552-563.	3.3	5
97	A skew symmetry-preserving computational technique for obtaining the positive and the bounded solutions of a time-delayed advection–diffusion–reaction equation. Journal of Computational and Applied Mathematics, 2013, 250, 256-269.	2.0	5
98	On a conditionally stable nonlinear method to approximate some monotone and bounded solutions of a generalized population model. Applied Mathematics and Computation, 2014, 229, 273-282.	2.2	5
99	On an efficient implementation and mass boundedness conditions for a discrete Dirichlet problem associated with a nonlinear system of singular partial differential equations. Journal of Difference Equations and Applications, 2015, 21, 1021-1043.	1.1	5
100	Positive computational modelling of the dynamics of active and inert biomass with extracellular polymeric substances. Journal of Difference Equations and Applications, 2015, 21, 319-335.	1.1	5
101	On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation. Journal of Difference Equations and Applications, 2015, 21, 374-382.	1.1	5
102	Conciliating efficiency and dynamical consistency in the simulation of the effects of proliferation and motility of transforming growth factor β on cancer cells. Communications in Nonlinear Science and Numerical Simulation, 2016, 40, 173-188.	3.3	5
103	Consensus formation simulation in a social network modeling controversial opinion dynamics with pairwise interactions. International Journal of Modern Physics C, 2017, 28, 1750058.	1.7	5
104	A dynamically consistent method to solve nonlinear multidimensional advection–reaction equations with fractional diffusion. Journal of Computational Physics, 2018, 366, 71-88.	3.8	5
105	A bounded and efficient scheme for multidimensional problems with anomalous convection and diffusion. Computers and Mathematics With Applications, 2018, 75, 3995-4011.	2.7	5
106	Numerical efficiency of some exponential methods for an advection–diffusion equation. International Journal of Computer Mathematics, 2019, 96, 1005-1029.	1.8	5
107	An efficient and fully explicit model to simulate delayed activator–inhibitor systems with anomalous diffusion. Journal of Mathematical Chemistry, 2019, 57, 1902-1923.	1.5	5
108	On the numerical and structural properties of a logarithmic scheme for diffusion–reaction equations. Applied Numerical Mathematics, 2019, 140, 104-114.	2.1	5

#	Article	IF	CITATIONS
109	Energy transmission in nonlinear chains of harmonic oscillators with long-range interactions. Results in Physics, 2020, 18, 103210.	4.1	5
110	A Conservative Scheme with Optimal Error Estimates for a Multidimensional Space–Fractional Gross–Pitaevskii Equation. International Journal of Applied Mathematics and Computer Science, 2019, 29, 713-723.	1.5	5
111	Positivity-preserving methods for a linearised Fisher–KPP equation with consistency properties in the energy domain. Journal of Difference Equations and Applications, 2010, 16, 389-405.	1.1	4
112	A bounded numerical method for approximating a hyperbolic and convective generalization of Fisher's model with nonlinear damping. Applied Mathematics Letters, 2012, 25, 946-951.	2.7	4
113	Computational study of the nonlinear bistability in a relativistic wave equation with anomalous diffusion. International Journal of Modern Physics C, 2018, 29, 1850057.	1.7	4
114	Numerical simulation of Turing patterns in a fractional hyperbolic reaction-diffusion model with Grünwald differences. European Physical Journal Plus, 2019, 134, 1.	2.6	4
115	Analysis of Structure-Preserving Discrete Models for Predator-Prey Systems with Anomalous Diffusion. Mathematics, 2019, 7, 1172.	2.2	4
116	An optimal Bayesian threshold method for onset detection in electric biosignals. Mathematical Biosciences, 2019, 309, 12-22.	1.9	4
117	Complex pattern formation arising from wave instabilities in a three-agent chemical system with superdiffusion. Journal of Mathematical Chemistry, 2019, 57, 638-654.	1.5	4
118	A parallelized computational model for multidimensional systems of coupled nonlinear fractional hyperbolic equations. Journal of Computational Physics, 2020, 402, 109043.	3.8	4
119	Simple efficient simulation of the complex dynamics of some nonlinear hyperbolic predator–prey models with spatial diffusion. Applied Mathematical Modelling, 2020, 77, 1373-1390.	4.2	4
120	Corrigendum to "A numerically efficient and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system― Communications in Nonlinear Science and Numerical Simulation, 2020, 83, 105109.	3.3	4
121	Nonlinear wave transmission in harmonically driven hamiltonian sine-Gordon regimes with memory effects. Chaos, Solitons and Fractals, 2021, 142, 110362.	5.1	4
122	Computer simulation of the dynamics of a spatial susceptible-infected-recovered epidemic model with time delays in transmission and treatment. Computer Methods and Programs in Biomedicine, 2021, 212, 106469.	4.7	4
123	Energy transmission in Hamiltonian systems of globally interacting particles with Klein-Gordon on-site potentials. Mathematics in Engineering, 2019, 1, 343-358.	0.9	4
124	An Efficient Discrete Model to Approximate the Solutions of a Nonlinear Double-Fractional Two-Component Gross–Pitaevskii-Type System. Mathematics, 2021, 9, 2727.	2.2	4
125	Two energy-preserving numerical models for a multi-fractional extension of the Klein–Gordon–Zakharov system. Journal of Computational and Applied Mathematics, 2022, 406, 114023. 	2.0	4
126	On the Propagation of Binary Signals in a Two-Dimensional Nonlinear Lattice with Nearest-Neighbor Interactions. Journal of Nonlinear Mathematical Physics, 2010, 17, 127.	1.3	3

#	Article	IF	CITATIONS
127	A structure-preserving method for the distribution of the first hitting time to a moving boundary for some Gaussian processes. Computers and Mathematics With Applications, 2017, 74, 1799-1812.	2.7	3
128	A compact exponential method for the efficient numerical simulation of the dewetting process of viscous thin films. Journal of Mathematical Chemistry, 2017, 55, 153-174.	1.5	3
129	A mathematical model for the pre-diagnostic of glioma growth based on blood glucose levels. Journal of Mathematical Chemistry, 2018, 56, 687-699.	1.5	3
130	A structure-preserving computational method in the simulation of the dynamics of cancer growth with radiotherapy. Journal of Mathematical Chemistry, 2018, 56, 1985-2000.	1.5	3
131	A package for the computational analysis of complex biophysical signals. International Journal of Modern Physics C, 2019, 30, 1950005.	1.7	3
132	The noisy Pais–Uhlenbeck oscillator. Journal of Mathematical Chemistry, 2019, 57, 1314-1329.	1.5	3
133	Design and analysis of a dissipative scheme to solve a generalized multi-dimensional Higgs boson equation in the de Sitter space–time. Journal of Computational and Applied Mathematics, 2022, 404, 113120.	2.0	3
134	Design and numerical analysis of a logarithmic scheme for nonlinear fractional diffusion–reaction equations. Journal of Computational and Applied Mathematics, 2022, 404, 113118.	2.0	3
135	A numerically efficient variational algorithm to solve a fractional nonlinear elastic string equation. Numerical Algorithms, 2021, 86, 75-102.	1.9	3
136	A bounded numerical solver for a fractional FitzHugh–Nagumo equation and its high-performance implementation. Engineering With Computers, 2021, 37, 1593-1609.	6.1	3
137	A finite-difference discretization preserving the structure of solutions of a diffusive model of type-1 human immunodeficiency virus. Advances in Difference Equations, 2021, 2021, .	3.5	3
138	Analysis and simulation of numerical schemes for nonlinear hyperbolic predator–prey models with spatial diffusion. Journal of Computational and Applied Mathematics, 2021, 404, 113636.	2.0	3
139	A Convergent Three-Step Numerical Method to Solve a Double-Fractional Two-Component Bose–Einstein Condensate. Mathematics, 2021, 9, 1412.	2.2	3
140	A Mass- and Energy-Conserving Numerical Model for a Fractional Gross–Pitaevskii System in Multiple Dimensions. Mathematics, 2021, 9, 1765.	2.2	3
141	A SEIR model with memory effects for the propagation of Ebola-like infections and its dynamically consistent approximation. Computer Methods and Programs in Biomedicine, 2021, 209, 106322.	4.7	3
142	ON THE GENERATION OF LOCALIZED NONLINEAR MODES IN A LINEAR ARRAY OF ANHARMONIC OSCILLATORS. International Journal of Modern Physics C, 2009, 20, 1187-1198.	1.7	2
143	An explicit finiteâ€difference method for the approximate solutions of a generic class of anharmonic dissipative nonlinear media. Numerical Methods for Partial Differential Equations, 2010, 26, 1351-1376.	3.6	2
144	On completely decomposable and separable modules over Prüfer domains. Journal of Commutative Algebra, 2010, 2, .	0.3	2

#	Article	IF	CITATIONS
145	Computational approximation of the likelihood ratio for testing the existence of change-points in a heteroscedastic series. Journal of Statistical Computation and Simulation, 2013, 83, 1491-1506.	1.2	2
146	A bounded linear integrator for some diffusive nonlinear time-dependent partial differential equations. Journal of Computational and Applied Mathematics, 2017, 318, 515-528.	2.0	2
147	Finite-difference modeling à la Mickens of the distribution of the stopping time in a stochastic differential equation. Journal of Difference Equations and Applications, 2017, 23, 799-820.	1.1	2
148	Superenergy flux of Einstein–Rosen waves. International Journal of Modern Physics D, 2018, 27, 1850072.	2.1	2
149	A numerically efficient Hamiltonian method for fractional wave equations. Applied Mathematics and Computation, 2018, 338, 231-248.	2.2	2
150	Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme. Mathematics, 2019, 7, 1095.	2.2	2
151	Nonlinear supratransmission in fractional wave systems. Journal of Mathematical Chemistry, 2019, 57, 790-811.	1.5	2
152	Modified Hamiltonian Fermi–Pasta–Ulam–Tsingou arrays which exhibit nonlinear supratransmission. Results in Physics, 2020, 18, 103237.	4.1	2
153	Fractional generalization of the fermi–Pasta–Ulam–Tsingou media and theoretical analysis of an explicit variational scheme. Communications in Nonlinear Science and Numerical Simulation, 2020, 88, 105158.	3.3	2
154	A positive and bounded convergent scheme for general space-fractional diffusion-reaction systems with inertial times. International Journal of Computer Mathematics, 2021, 98, 1071-1097.	1.8	2
155	Driven damped nth-power anharmonic oscillators with time-dependent coefficients and their integrals of motion. Results in Physics, 2021, 25, 104169.	4.1	2
156	On the dissipativity of some Caputo time-fractional subdiffusion models in multiple dimensions: Theoretical and numerical investigations. Journal of Computational and Applied Mathematics, 2022, 400, 113748.	2.0	2
157	A generalization of the Pontryagin–Hill theorems to projective modules over Prüfer domains. Pacific Journal of Mathematics, 2010, 246, 391-405.	O.5	2
158	On a discrete model that dissipates the free energy of a time-space fractional generalized nonlinear parabolic equation. Applied Numerical Mathematics, 2022, 172, 215-223.	2.1	2
159	Energy transmission in the forbidden band-gap of a nonlinear chain with global interactions. Journal of Physics A: Mathematical and Theoretical, 2020, 53, 505701.	2.1	2
160	Fractional Calculus—Theory and Applications. Axioms, 2022, 11, 43.	1.9	2
161	A dynamically consistent computational method to solve numerically a mathematical model of polio propagation with spatial diffusion. Computer Methods and Programs in Biomedicine, 2022, 218, 106709.	4.7	2
162	A nonlinear discrete model for approximating a conservative multi-fractional Zakharov system: Analysis and computational simulations. Mathematics and Computers in Simulation, 2022, , .	4.4	2

#	Article	IF	CITATIONS
163	An efficient nonstandard computer method to solve a compartmental epidemiological model for COVID-19 with vaccination and population migration. Computer Methods and Programs in Biomedicine, 2022, 221, 106920.	4.7	2
164	On the bifurcation of energy in media governed by (2+1)-dimensional modified Klein–Gordon equations. Applied Mathematics and Computation, 2008, 206, 221-235.	2.2	1
165	On the Unions of Ascending Chains of Direct Sums of Ideals of h-Local Prüfer Domains. Algebra Colloquium, 2011, 18, 749-757.	0.2	1
166	Some remarks on an exact and dynamically consistent scheme for the Burgers-Huxley equation in higher dimensions. Advances in Difference Equations, 2015, 2015, .	3.5	1
167	A Mickensâ€type discretization of a diffusive model with nonpolynomial advection/convection and reaction terms. Numerical Methods for Partial Differential Equations, 2015, 31, 652-669.	3.6	1
168	On Modules Which are Isomorphic to Relatively Divisible or Pure Submodules of Each Other. Quaestiones Mathematicae, 2015, 38, 789-792.	0.6	1
169	An integro-differential generalization and dynamically consistent discretizations of some hyperbolic models with nonlinear damping. International Journal of Computer Mathematics, 2015, 92, 2109-2120.	1.8	1
170	An equivalence criterion for the generalized injectivity of modules with respect to algebraic classes of homomorphisms. Journal of Algebra and Its Applications, 2016, 15, 1650166.	0.4	1
171	On the isomorphism of injective objects in Grothendieck categories. Quaestiones Mathematicae, 2017, 40, 617-622.	0.6	1
172	Traveling-wave solutions of a generalized damped wave equation with time-dependent coefficients through the trial equation method. Journal of Mathematical Chemistry, 2018, 56, 1976-1984.	1.5	1
173	On a positivity-preserving numerical model for a linearized hyperbolic Fisher–Kolmogorov–Petrovski–Piscounov equation. Journal of Computational and Applied Mathematics, 2019, 354, 603-611.	2.0	1
174	Some exact solutions of a hyperbolic model of energy transmission in non-homogeneous media. Journal of Computational and Applied Mathematics, 2019, 354, 597-602.	2.0	1
175	Discrete monotone method for space-fractional nonlinear reaction–diffusion equations. Advances in Difference Equations, 2019, 2019, .	3.5	1
176	Algorithm for some anomalously diffusive hyperbolic systems in molecular dynamics: Theoretical analysis and pattern formation. Journal of Computational Physics, 2019, 397, 108863.	3.8	1
177	Structural and numerical analysis of an implicit logarithmic scheme for diffusion equations with nonlinear reaction. International Journal of Modern Physics C, 2019, 30, 1950065.	1.7	1
178	A Numerical Schemefor the Probability Density of the First Hitting Time for Some Random Processes. Symmetry, 2020, 12, 1907.	2.2	1
179	On the stability and convergence of an implicit logarithmic scheme for diffusion equations with nonlinear reaction. Journal of Mathematical Chemistry, 2020, 58, 735-749.	1.5	1
180	Design and analysis of a discrete method for a timeâ€delayed reaction–diffusion epidemic model. Mathematical Methods in the Applied Sciences, 2021, 44, 5110-5122.	2.3	1

#	Article	IF	CITATIONS
181	Exact solutions of non-linear Klein–Gordon equation with non-constant coefficients through the trial equation method. Journal of Mathematical Chemistry, 2021, 59, 827-839.	1.5	1
182	A dissipation-preserving scheme to approximate radially symmetric solutions of the Higgs boson equation in the de Sitter space-time. Communications in Nonlinear Science and Numerical Simulation, 2021, 96, 105698.	3.3	1
183	On a nonlinear energy-conserving scalar auxiliary variable (SAV) model for Riesz space-fractional hyperbolic equations. Applied Numerical Mathematics, 2021, 165, 339-347.	2.1	1
184	An easy-to-implement parallel algorithm to simulate complex instabilities in three-dimensional (fractional) hyperbolic systems. Computer Physics Communications, 2020, 254, 107383.	7.5	1
185	Computational solution of an acid-mediated tumor-growth radial model under logistic growth regimes for normal and cancer cells. International Journal of Biomathematics, 0, , .	2.9	1
186	CMMSE: analysis and comparison of some numerical methods to solve a nonlinear fractional Gross–Pitaevskii system. Journal of Mathematical Chemistry, 2022, 60, 1272-1286.	1.5	1
187	On the Union of Increasing Chains of Torsion-Free Modules Over Integral Domains. Results in Mathematics, 2013, 63, 221-228.	0.8	Ο
188	On a linear finite-difference model of a mixed-culture biological system arising in food safety studies. Advances in Difference Equations, 2013, 2013, .	3.5	0
189	A fast and unconditionally positive finite-difference discretization of a multidimensional equation in nonlinear population dynamics. Journal of Difference Equations and Applications, 2014, 20, 1652-1666.	1.1	Ο
190	Nonlinear energy transmission in systems with nonlocal effects and relativistic potentials. International Journal of Modern Physics C, 2018, 29, 1850106.	1.7	0
191	Discrete Dynamics of Fractional Systems: Theory and Numerical Techniques. Discrete Dynamics in Nature and Society, 2018, 2018, 1-1.	0.9	Ο
192	Entropy-Based Selection of Cluster Representatives for Document Image Compression. SIAM Journal on Imaging Sciences, 2019, 12, 1720-1738.	2.2	0
193	A structure-preserving Bhattacharya method for nonlinear parabolic equations with fractional diffusion and advection. Journal of Computational and Applied Mathematics, 2019, 354, 623-640.	2.0	Ο
194	Discrete Dynamics of Nonlinear Systems in Nature and Society. Discrete Dynamics in Nature and Society, 2019, 2019, 1-2.	0.9	0
195	A fully explicit variational integrator for multidimensional systems of coupled nonlinear fractional hyperbolic equations. Applied Numerical Mathematics, 2020, 154, 149-171.	2.1	Ο
196	A dynamically consistent exponential scheme to solve some advection–reaction equations with Riesz anomalous diffusion. Journal of Computational and Applied Mathematics, 2020, 378, 112920.	2.0	0
197	Second-Order Semi-Discretized Schemes for Solving Stochastic Quenching Models on Arbitrary Spatial Grids. Discrete Dynamics in Nature and Society, 2021, 2021, 1-19.	0.9	0
198	On the isomorphism of coneat-injective modules over commutative rings. Quaestiones Mathematicae, 0, , 1-6.	0.6	0

#	Article	IF	CITATIONS
199	An implicit and convergent method for radially symmetric solutions of Higgs' boson equation in the de Sitter space–time. Applied Numerical Mathematics, 2021, 165, 270-289.	2.1	0
200	On the nonlinear wave transmission in a nonlinear continuous hyperbolic regime with Caputo-type temporal fractional derivative. Results in Physics, 2021, 29, 104808.	4.1	0
201	Derivation of a quasi-linear second-order elliptic-parabolic model for the efficiency of silicon solar cells. Applied Mathematical Modelling, 2021, 99, 730-738.	4.2	0
202	A Structure-Preserving Modified Exponential Method for the Fisher–Kolmogorov Equation. Applied Mathematics and Information Sciences, 2017, 11, 69-77.	0.5	0
203	On some generalized Raina-type fractional-order integral operators and related Chebyshev inequalities. AIMS Mathematics, 2022, 7, 10256-10275.	1.6	0
204	Solution Spaces Associated to Continuous or Numerical Models for Which Integrable Functions Are Bounded. Mathematics, 2022, 10, 1936.	2.2	0