
Anna-Katerina Hadjantonakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023029/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Promotion of Trophoblast Stem Cell Proliferation by FGF4. Science, 1998, 282, 2072-2075.	12.6	1,221
2	Guidelines and definitions for research on epithelial–mesenchymal transition. Nature Reviews Molecular Cell Biology, 2020, 21, 341-352.	37.0	1,195
3	Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development (Cambridge), 2008, 135, 3081-3091.	2.5	470
4	Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mechanisms of Development, 1998, 76, 79-90.	1.7	464
5	The Endoderm of the Mouse Embryo Arises by Dynamic Widespread Intercalation of Embryonic and Extraembryonic Lineages. Developmental Cell, 2008, 15, 509-520.	7.0	357
6	Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development (Cambridge), 2014, 141, 4231-4242.	2.5	346
7	Tbr2 Directs Conversion of Radial Glia into Basal Precursors and Guides Neuronal Amplification by Indirect Neurogenesis in the Developing Neocortex. Neuron, 2008, 60, 56-69.	8.1	344
8	The emergent landscape of the mouse gut endoderm at single-cell resolution. Nature, 2019, 569, 361-367.	27.8	285
9	TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1. Nature, 2020, 577, 566-571.	27.8	271
10	A sensitive and bright single-cell resolution live imaging reporter of Wnt/ß-catenin signaling in the mouse. BMC Developmental Biology, 2010, 10, 121.	2.1	267
11	Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nature Cell Biology, 2014, 16, 27-37.	10.3	262
12	Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo. Journal of Cell Science, 2005, 118, 505-515.	2.0	242
13	Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. , 2004, 4, 33.		233
14	FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development (Cambridge), 2013, 140, 267-279.	2.5	226
15	Embryonic stem cells and mice expressing different GFP variants for multiple non-invasive reporter usage within a single animal. BMC Biotechnology, 2002, 2, 11.	3.3	216
16	GATA6 Levels Modulate Primitive Endoderm Cell Fate Choice and Timing in the Mouse Blastocyst. Developmental Cell, 2014, 29, 454-467.	7.0	196
17	The primitive endoderm lineage of the mouse blastocyst: Sequential transcription factor activation and regulation of differentiation by Sox17. Developmental Biology, 2011, 350, 393-404.	2.0	193
18	Notch and Hippo Converge on Cdx2 to Specify the Trophectoderm Lineage in the Mouse Blastocyst. Developmental Cell 2014 30 410-422	7.0	189

#	Article	IF	CITATIONS
19	Technicolour transgenics: imaging tools for functional genomics in the mouse. Nature Reviews Genetics, 2003, 4, 613-625.	16.3	157
20	Sequential Notch activation regulates ventricular chamber development. Nature Cell Biology, 2016, 18, 7-20.	10.3	156
21	Lineage specificity of primary cilia in the mouse embryo. Nature Cell Biology, 2015, 17, 113-122.	10.3	150
22	Oct4 is required for lineage priming in the developing inner cell mass of the mouse blastocyst. Development (Cambridge), 2014, 141, 1001-1010.	2.5	146
23	Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. ELife, 2018, 7, .	6.0	144
24	Differential plasticity of epiblast and primitive endoderm precursors within the ICM of the early mouse embryo. Development (Cambridge), 2012, 139, 129-139.	2.5	143
25	Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nature Protocols, 2014, 9, 559-574.	12.0	143
26	In vivo imaging and differential localization of lipid-modified GFP-variant fusions in embryonic stem cells and mice. Genesis, 2006, 44, 202-218.	1.6	142
27	Non-invasive sexing of preimplantation stage mammalian embryos. Nature Genetics, 1998, 19, 220-222.	21.4	135
28	The many faces of Pluripotency: in vitro adaptations of a continuum of in vivo states. BMC Developmental Biology, 2017, 17, 7.	2.1	132
29	Lineage Establishment and Progression within the Inner Cell Mass of the Mouse Blastocyst Requires FGFR1 and FGFR2. Developmental Cell, 2017, 41, 496-510.e5.	7.0	131
30	The first cleavage of the mouse zygote predicts the blastocyst axis. Nature, 2005, 434, 391-395.	27.8	130
31	SOX17 links gut endoderm morphogenesis and germ layer segregation. Nature Cell Biology, 2014, 16, 1146-1156.	10.3	129
32	Dynamic imaging of mammalian neural tube closure. Developmental Biology, 2010, 344, 941-947.	2.0	125
33	Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst. Nature Communications, 2016, 7, 13463.	12.8	122
34	Widespread Mitotic Bookmarking by Histone Marks and Transcription Factors in Pluripotent Stem Cells. Cell Reports, 2017, 19, 1283-1293.	6.4	122
35	The p53 Family Coordinates Wnt and Nodal Inputs in Mesendodermal Differentiation of Embryonic Stem Cells. Cell Stem Cell, 2017, 20, 70-86.	11.1	121
36	An Xâ€linked GFP transgene reveals unexpected paternal Xâ€chromosome activity in trophoblastic giant cells of the mouse placenta. Genesis, 2001, 29, 133-140.	1.6	112

#	Article	IF	CITATIONS
37	A role for PDGF signaling in expansion of the extra-embryonic endoderm lineage of the mouse blastocyst. Development (Cambridge), 2010, 137, 3361-3372.	2.5	110
38	Gata6+ Pericardial Cavity Macrophages Relocate to the Injured Heart and Prevent Cardiac Fibrosis. Immunity, 2019, 51, 131-140.e5.	14.3	110
39	Oriented cell motility and division underlie early limb bud morphogenesis. Development (Cambridge), 2010, 137, 2551-2558.	2.5	109
40	A Rapid and Efficient 2D/3D Nuclear Segmentation Method for Analysis of Early Mouse Embryo and Stem Cell Image Data. Stem Cell Reports, 2014, 2, 382-397.	4.8	108
41	Anisotropic stress orients remodelling of mammalian limb bud ectoderm. Nature Cell Biology, 2015, 17, 569-579.	10.3	102
42	Heterogeneities in Nanog Expression Drive Stable Commitment to Pluripotency in the Mouse Blastocyst. Cell Reports, 2015, 10, 1508-1520.	6.4	101
43	The color of mice: in the light of GFP-variant reporters. Histochemistry and Cell Biology, 2001, 115, 49-58.	1.7	97
44	Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Developmental Biology, 2009, 9, 49.	2.1	97
45	Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nature Protocols, 2013, 8, 1028-1041.	12.0	97
46	Developmental potential and behavior of tetraploid cells in the mouse embryo. Developmental Biology, 2005, 288, 150-159.	2.0	94
47	Nap1-mediated actin remodeling is essential for mammalian myoblast fusion. Journal of Cell Science, 2009, 122, 3282-3293.	2.0	94
48	Genetic and spectrally distinct in vivoimaging: embryonic stem cells and mice with widespread expression of a monomeric red fluorescent protein. BMC Biotechnology, 2005, 5, 20.	3.3	92
49	Anatomy of a blastocyst: Cell behaviors driving cell fate choice and morphogenesis in the early mouse embryo. Genesis, 2013, 51, 219-233.	1.6	91
50	The Dynamics of Morphogenesis in the Early Mouse Embryo. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015867.	5.5	91
51	Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development (Cambridge), 2012, 139, 2866-2877.	2.5	87
52	A bright single-cell resolution live imaging reporter of Notch signaling in the mouse. BMC Developmental Biology, 2013, 13, 15.	2.1	87
53	Quantitative imaging of cell dynamics in mouse embryos using light-sheet microscopy. Development (Cambridge), 2014, 141, 4406-4414.	2.5	84
54	Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes and Development, 2015, 29, 2108-2122.	5.9	83

#	Article	IF	CITATIONS
55	Using a histone yellow fluorescent protein fusion for tagging and tracking endothelial cells in ES cells and mice. Genesis, 2005, 42, 162-171.	1.6	81
56	Interaction of Wnt3a, Msgn1 and Tbx6 in neural versus paraxial mesoderm lineage commitment and paraxial mesoderm differentiation in the mouse embryo. Developmental Biology, 2012, 367, 1-14.	2.0	78
57	Production of chimeras by aggregation of embryonic stem cells with diploid or tetraploid mouse embryos. Nature Protocols, 2006, 1, 1145-1153.	12.0	75
58	Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mechanisms of Development, 2020, 163, 103617.	1.7	74
59	Tg(Afp-GFP) expression marks primitive and definitive endoderm lineages during mouse development. Developmental Dynamics, 2006, 235, 2549-2558.	1.8	73
60	Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Current Opinion in Genetics and Development, 2010, 20, 420-427.	3.3	73
61	A Membrane Associated mCherry Fluorescent Reporter Line for Studying Vascular Remodeling and Cardiac Function During Murine Embryonic Development. Anatomical Record, 2009, 292, 333-341.	1.4	72
62	BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Developmental Biology, 2012, 361, 245-262.	2.0	72
63	Eomesodermin, a target gene of Pou4f2, is required for retinal ganglion cell and optic nerve development in the mouse. Development (Cambridge), 2008, 135, 271-280.	2.5	71
64	Tbx6 Regulates Left/Right Patterning in Mouse Embryos through Effects on Nodal Cilia and Perinodal Signaling. PLoS ONE, 2008, 3, e2511.	2.5	69
65	BMP4 Sufficiency to Induce Choroid Plexus Epithelial Fate from Embryonic Stem Cell-Derived Neuroepithelial Progenitors. Journal of Neuroscience, 2012, 32, 15934-15945.	3.6	69
66	Live Visualization of ERK Activity in the Mouse Blastocyst Reveals Lineage-Specific Signaling Dynamics. Developmental Cell, 2020, 55, 341-353.e5.	7.0	67
67	Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo. Blood, 2011, 117, 4924-4934.	1.4	64
68	The T-box transcription factor Eomesodermin is essential for AVE induction in the mouse embryo. Genes and Development, 2013, 27, 997-1002.	5.9	64
69	<i>Transthyretin</i> mouse transgenes direct RFP expression or Creâ€mediated recombination throughout the visceral endoderm. Genesis, 2009, 47, 447-455.	1.6	62
70	Eomes::GFP—a tool for live imaging cells of the trophoblast, primitive streak, and telencephalon in the mouse embryo. Genesis, 2007, 45, 208-217.	1.6	61
71	Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-Î ² signaling. Genes and Development, 2019, 33, 1506-1524.	5.9	61
72	The endoderm: a divergent cell lineage with many commonalities. Development (Cambridge), 2019, 146, .	2.5	61

#	Article	IF	CITATIONS
73	Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends in Biotechnology, 2009, 27, 266-276.	9.3	59
74	Growth-factor-mediated coupling between lineage size and cell fate choice underlies robustness of mammalian development. ELife, 2020, 9, .	6.0	56
75	A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis, 2009, 47, 61-66.	1.6	55
76	A loss-of-function and H2B-Venus transcriptional reporter allele for Gata6 in mice. BMC Developmental Biology, 2015, 15, 38.	2.1	54
77	Transitions between epithelial and mesenchymal states and the morphogenesis of the early mouse embryo. Cell Adhesion and Migration, 2010, 4, 447-457.	2.7	53
78	Loss of Apela Peptide in Mice Causes Low Penetrance Embryonic Lethality and Defects in Early Mesodermal Derivatives. Cell Reports, 2017, 20, 2116-2130.	6.4	53
79	Tbx3 Controls Dppa3 Levels and Exit from Pluripotency toward Mesoderm. Stem Cell Reports, 2015, 5, 97-110.	4.8	52
80	Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell Lineages. Cell, 2020, 183, 702-716.e14.	28.9	52
81	Role of the Gut Endoderm in Relaying Left-Right Patterning in Mice. PLoS Biology, 2012, 10, e1001276.	5.6	51
82	PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells, 2013, 31, 1932-1941.	3.2	51
83	Making lineage decisions with biological noise: Lessons from the early mouse embryo. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e319.	5.9	51
84	Mesoderm specification and diversification: from single cells to emergent tissues. Current Opinion in Cell Biology, 2019, 61, 110-116.	5.4	50
85	FACS for the isolation of individual cells from transgenic mice harboring a fluorescent protein reporter. Genesis, 2000, 27, 95-98.	1.6	48
86	A Comparative Analysis of Extra-Embryonic Endoderm Cell Lines. PLoS ONE, 2010, 5, e12016.	2.5	47
87	Notochord morphogenesis in mice: Current understanding & open questions. Developmental Dynamics, 2016, 245, 547-557.	1.8	46
88	A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Developmental Biology, 2018, 441, 104-126.	2.0	45
89	Cloning and expression throughout mouse development ofmfat1, a homologue of theDrosophila tumour suppressor genefat. Developmental Dynamics, 2000, 217, 233-240.	1.8	42
90	Extra-embryonic Wnt3 regulates the establishment of the primitive streak in mice. Developmental Biology, 2015, 403, 80-88.	2.0	40

#	Article	IF	CITATIONS
91	Dual transgene strategy for live visualization of chromatin and plasma membrane dynamics in murine embryonic stem cells and embryonic tissues. Genesis, 2009, 47, 330-336.	1.6	36
92	eXtraembryonic ENdoderm (XEN) Stem Cells Produce Factors that Activate Heart Formation. PLoS ONE, 2010, 5, e13446.	2.5	35
93	Live imaging of fluorescent proteins in chordate embryos: From ascidians to mice. Microscopy Research and Technique, 2006, 69, 160-167.	2.2	34
94	PI3K/Akt1 signalling specifies foregut precursors by generating regionalized extra-cellular matrix. ELife, 2013, 2, e00806.	6.0	32
95	Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Seminars in Cell and Developmental Biology, 2015, 47-48, 101-109.	5.0	32
96	GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Reports, 2016, 16, 1026-1038.	6.4	32
97	Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Current Topics in Developmental Biology, 2020, 137, 391-431.	2.2	32
98	Transitions in cell potency during early mouse development are driven by Notch. ELife, 2019, 8, .	6.0	32
99	Quantitative Analysis of Protein Expression to Study Lineage Specification in Mouse Preimplantation Embryos. Journal of Visualized Experiments, 2016, , 53654.	0.3	30
100	Ex Utero Culture and Live Imaging of Mouse Embryos. Methods in Molecular Biology, 2011, 770, 243-257.	0.9	29
101	Birth defects associated with perturbations in preimplantation, gastrulation, and axis extension: from conjoined twinning to caudal dysgenesis. Wiley Interdisciplinary Reviews: Developmental Biology, 2013, 2, 427-442.	5.9	29
102	Troika of the Mouse Blastocyst: Lineage Segregation and Stem Cells. Current Stem Cell Research and Therapy, 2012, 7, 78-91.	1.3	26
103	Zfp281 is essential for mouse epiblast maturation through transcriptional and epigenetic control of Nodal signaling. ELife, 2017, 6, .	6.0	26
104	Imaging Mouse Development with Confocal Time-Lapse Microscopy. Methods in Enzymology, 2010, 476, 351-377.	1.0	25
105	<i>Afp::mCherry</i> , a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis, 2011, 49, 124-133.	1.6	25
106	Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130547.	4.0	25
107	Completely ES Cell-Derived Mice Produced by Tetraploid Complementation Using Inner Cell Mass (ICM) Deficient Blastocysts. PLoS ONE, 2014, 9, e94730.	2.5	24
108	Live imaging and morphometric analysis of embryonic development in the ascidianCiona intestinalis. Genesis, 2005, 43, 136-147.	1.6	23

#	Article	IF	CITATIONS
109	Dynamic and Polarized Muscle Cell Behaviors Accompany Tail Morphogenesis in the Ascidian Ciona intestinalis. PLoS ONE, 2007, 2, e714.	2.5	23
110	Live Imaging of Mouse Embryos. Cold Spring Harbor Protocols, 2011, 2011, pdb.top104.	0.3	23
111	Rab7-Mediated Endocytosis Establishes Patterning of Wnt Activity through Inactivation of Dkk Antagonism. Cell Reports, 2020, 31, 107733.	6.4	21
112	Cancer-Causative Mutations Occurring in Early Embryogenesis. Cancer Discovery, 2022, 12, 949-957.	9.4	21
113	Rapid and efficient degradation of endogenous proteins inÂvivo identifies stage-specific roles of RNA Pol II pausing in mammalian development. Developmental Cell, 2022, 57, 1068-1080.e6.	7.0	21
114	RNA polymerase II pausing in development: orchestrating transcription. Open Biology, 2022, 12, 210220.	3.6	19
115	Guts and gastrulation: Emergence and convergence of endoderm in the mouse embryo. Current Topics in Developmental Biology, 2020, 136, 429-454.	2.2	18
116	Photomodulatable fluorescent proteins for imaging cell dynamics and cell fate. Organogenesis, 2009, 5, 217-226.	1.2	17
117	Embryonic stem cell identity grounded in the embryo. Nature Cell Biology, 2014, 16, 502-504.	10.3	17
118	Understanding the Molecular Circuitry of Cell Lineage Specification in the Early Mouse Embryo. Genes, 2011, 2, 420-448.	2.4	16
119	Cell Lineage Allocation Within the Inner Cell Mass of the Mouse Blastocyst. Results and Problems in Cell Differentiation, 2012, 55, 185-202.	0.7	16
120	A <i>Gata4</i> nuclear GFP transcriptional reporter to study endoderm and cardiac development in the mouse. Biology Open, 2018, 7, .	1.2	15
121	Live Imaging, Identifying, and Tracking Single Cells in Complex Populations In Vivo and Ex Vivo. Methods in Molecular Biology, 2013, 1052, 109-123.	0.9	13
122	Single cells get together: High-resolution approaches to study the dynamics of early mouse development. Seminars in Cell and Developmental Biology, 2015, 47-48, 92-100.	5.0	13
123	Mechanics drives cell differentiation. Nature, 2016, 536, 281-282.	27.8	13
124	InÂvitro modeling of early mammalian embryogenesis. Current Opinion in Biomedical Engineering, 2020, 13, 134-143.	3.4	13
125	Live Imaging Mouse Embryonic Development: Seeing Is Believing and Revealing. Methods in Molecular Biology, 2014, 1092, 405-420.	0.9	13
126	Nâ€glycoprotein surfaceomes of four developmentally distinct mouse cell types. Proteomics - Clinical Applications, 2014, 8, 603-609.	1.6	12

#	Article	IF	CITATIONS
127	Loss of Cubilin, the intrinsic factor-vitamin B12 receptor, impairs visceral endoderm endocytosis and endodermal patterning in the mouse. Scientific Reports, 2019, 9, 10168.	3.3	12
128	Live Imaging Fluorescent Proteins in Early Mouse Embryos. Methods in Enzymology, 2012, 506, 361-389.	1.0	10
129	Single-Cell Approaches: Pandora's Box of Developmental Mechanisms. Developmental Cell, 2016, 38, 574-578.	7.0	10
130	Quantitative analysis of signaling responses during mouse primordial germ cell specification. Biology Open, 2021, 10, .	1.2	8
131	Follow your gut: Relaying information from the site of left–right symmetry breaking in the mouse. Genesis, 2014, 52, 503-514.	1.6	7
132	The transcription factor Rreb1 regulates epithelial architecture, invasiveness, and vasculogenesis in early mouse embryos. ELife, 2021, 10, .	6.0	7
133	Visualizing endoderm cell populations and their dynamics in the mouse embryo with a Hex-tdTomato reporter. Biology Open, 2017, 6, 678-687.	1.2	6
134	XRCC3 loss leads to midgestational embryonic lethality in mice. DNA Repair, 2021, 108, 103227.	2.8	6
135	Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases?. Genome Biology, 2002, 3, reviews1023.1.	9.6	5
136	Lights, Camera, Action! Visualizing the Cellular Choreography of Mouse Gastrulation. Developmental Cell, 2018, 47, 684-685.	7.0	5
137	Ex Utero Culture and Imaging of Mouse Embryos. Methods in Molecular Biology, 2019, 1920, 163-182.	0.9	5
138	Coordination between patterning and morphogenesis ensures robustness during mouse development. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190562.	4.0	5
139	From pluripotency to differentiation: laying foundations for the body pattern in the mouse embryo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130535.	4.0	4
140	Spatially Organized Differentiation of Mouse Pluripotent Stem Cells on Micropatterned Surfaces. Methods in Molecular Biology, 2021, 2214, 41-58.	0.9	4
141	Does prepatterning occur in the mouse egg? (Reply). Nature, 2006, 442, E4-E4.	27.8	3
142	A conditional mutant allele for analysis of <i>Mixl1</i> function in the mouse. Genesis, 2014, 52, 417-423.	1.6	3
143	Top to Tail: Anterior-Posterior Patterning Precedes Regional Nervous System Identity. Cell, 2018, 175, 905-907.	28.9	3
144	(De)constructing the blastocyst: Lessons in self-organization from the mouse. Current Opinion in Systems Biology, 2018, 11, 98-106.	2.6	3

#	Article	IF	CITATIONS
145	The multidimensionality of cell behaviors underlying morphogenesis: a case study in ascidians. BioEssays, 2006, 28, 874-879.	2.5	1
146	Introduction. Current Topics in Developmental Biology, 2018, 128, 1-10.	2.2	1
147	Cells under Tension Drive Gastrulation. Developmental Cell, 2020, 55, 669-670.	7.0	1
148	A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis, 2009, 47, spcone.	1.6	0
149	Transthyretinmouse transgenes direct RFP expression or Cre-mediated recombination throughout the visceral endoderm. Genesis, 2009, 47, spcone-spcone.	1.6	0
150	VISIONS: the art of science. Molecular Reproduction and Development, 2009, 76, 803-803.	2.0	0
151	Afp::mCherry, a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis, 2011, 49, spcone-spcone.	1.6	0
152	Highlights of the special imaging issue. Genesis, 2011, 49, 479-483.	1.6	0
153	Highlights of the special imaging issue. Genesis, 2011, 49, spcone-spcone.	1.6	0
154	Stem Cells from Early Mammalian Embryos. , 2013, , 41-57.		0
155	Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst. Proceedings of SPIE, 2015, , .	0.8	0
156	Cover Image, Volume 7, Issue 4. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e326.	5.9	0
157	Kathryn Anderson (1952–2020). Cell, 2021, 184, 1123-1126.	28.9	0
158	Regulation of Primitive Erythroid Progenitor Development. Blood, 2012, 120, 1211-1211.	1.4	0
159	A developmental insurance policy. ELife, 2017, 6, .	6.0	0