Qijun Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering FeS2 nanoparticles on tubular g-C3N4 for photo-Fenton treatment of paint wastewater. Chinese Chemical Letters, 2022, 33, 3073-3077.	9.0	5
2	Cadmium induced aggregation of orange–red emissive carbon dots with enhanced fluorescence for intracellular imaging. Journal of Hazardous Materials, 2022, 427, 128092.	12.4	34
3	The enzymatic performance derived from the lattice planes of Ir nanoparticles. Catalysis Science and Technology, 2022, 12, 1017-1024.	4.1	3
4	"Light on―fluorescence carbon dots with intramolecular hydrogen bond-regulated co-planarization for cell imaging and temperature sensing. Journal of Materials Chemistry A, 2022, 10, 2085-2095.	10.3	28
5	Template-Free Synthesis of Porous Fluorescent Carbon Nanomaterials with Gluten for Intracellular Imaging and Drug Delivery. ACS Applied Materials & Interfaces, 2022, 14, 21310-21318.	8.0	20
6	Protein-stabilized Ir nanoparticles with usual charge-selective peroxidase properties. Journal of Materials Chemistry B, 2021, 9, 8464-8471.	5.8	2
7	Phosphate-Assisted Transformation of Methylene Blue to Red-Emissive Carbon Dots with Enhanced Singlet Oxygen Generation for Photodynamic Therapy. ACS Applied Nano Materials, 2021, 4, 4820-4828.	5.0	30
8	Electrochemical Detection of Phosphate Ion in Body Fluids with a Magnesium Phosphate Modified Electrode. Analytical Sciences, 2021, 37, 1247-1252.	1.6	4
9	Electrogenerated singlet oxygen chemiluminescence during in situ transformation of nanostructured brushite to hydroxyapatite on Nafion film. Electrochimica Acta, 2020, 332, 135477.	5.2	3
10	Organic molecule enhanced 1O2 electrochemiluminescence from the phase transformation of amorphous calcium phosphate. Electrochimica Acta, 2020, 361, 137062.	5.2	3
11	Luminescent Chemosensor Based on Ru(II) Bipyridine Complex for Detection of Sudan I through Inner Filter Effect. Journal of Fluorescence, 2020, 30, 1543-1551.	2.5	5
12	Ir nanoparticles with multi-enzyme activities and its application in the selective oxidation of aromatic alcohols. Applied Catalysis B: Environmental, 2020, 267, 118725.	20.2	41
13	Aggregation-Induced Room-Temperature Phosphorescence Obtained from Water-Dispersible Carbon Dot-Based Composite Materials. ACS Applied Materials & Interfaces, 2020, 12, 10791-10800.	8.0	96
14	Direct Electrochemical Sensing of Phosphate in Aqueous Solutions Based on Phase Transition of Calcium Phosphate. ACS Sensors, 2020, 5, 541-548.	7.8	24
15	Simple multistep assembly of hybrid carbon material based microelectrode for highly sensitive detection of neurotransmitters. Journal of Electroanalytical Chemistry, 2020, 863, 114082.	3.8	6
16	Red emissive carbon dots obtained from direct calcination of 1,2,4-triaminobenzene for dual-mode pH sensing in living cells. New Journal of Chemistry, 2020, 44, 7210-7217.	2.8	18
17	Formation and phase evolution of calcium phosphates modulated by ion exchange ionomer Nafion. CrystEngComm, 2020, 22, 8243-8250.	2.6	2
18	In-situ dynamic reaction of Ag NPs: Strategy for the construction of a sensitive electrochemical chiral sensor. Sensors and Actuators B: Chemical, 2020, 319, 128315.	7.8	7

QIJUN SONG

#	Article	IF	CITATIONS
19	Temperature-controlled spectral tuning of full-color carbon dots and their strongly fluorescent solid-state polymer composites for light-emitting diodes. Nanoscale Advances, 2019, 1, 1413-1420.	4.6	54
20	A novel cyclometallated iridium(iii) complex based dual-mode phosphorescent probe for detection of acidity and bovine serum albumin. Analytical Methods, 2019, 11, 3033-3040.	2.7	6
21	Color tunable room temperature phosphorescent carbon dot based nanocomposites obtainable from multiple carbon sources <i>via</i> a molten salt method. Nanoscale, 2019, 11, 11967-11974.	5.6	78
22	Polymer-Assisted Self-Assembly of Multicolor Carbon Dots as Solid-State Phosphors for Fabrication of Warm, High-Quality, and Temperature-Responsive White-Light-Emitting Devices. ACS Applied Materials & Interfaces, 2019, 11, 22332-22338.	8.0	51
23	Controllable etching-induced contact enhancement for high-performance carbon nanotube thin-film transistors. RSC Advances, 2019, 9, 10578-10583.	3.6	1
24	Assembly of aligned semiconducting carbon nanotubes in organic solvents via introducing inter-tube electrostatic repulsion. Carbon, 2019, 146, 172-180.	10.3	11
25	New luminescent probe for the selective detection of dopamine based on in situ prepared Ru(II) complex-sodium dodecyl benzyl sulfonate assembly. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 371, 128-135.	3.9	9
26	Rational Design of Magnetic Micronanoelectrodes for Recognition and Ultrasensitive Quantification of Cysteine Enantiomers. Analytical Chemistry, 2018, 90, 3374-3381.	6.5	44
27	Rapid Visualization of Latent Fingerprints with Colorâ€Tunable Solid Fluorescent Carbon Dots. Particle and Particle Systems Characterization, 2018, 35, 1700387.	2.3	43
28	Synthesis and application of a water-soluble phosphorescent iridium complex as turn-on sensing material for human serum albumin. Dalton Transactions, 2018, 47, 2330-2336.	3.3	16
29	Surface state-controlled C-dot/C-dot based dual-emission fluorescent nanothermometers for intra-cellular thermometry. Nanoscale, 2018, 10, 21809-21817.	5.6	31
30	Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection. Biosensors and Bioelectronics, 2018, 117, 53-59.	10.1	80
31	Rapid and selective luminescent sensing of allergenic gluten by highly phosphorescent switch-on probe. Talanta, 2018, 190, 292-297.	5.5	4
32	A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability. Talanta, 2017, 166, 169-175.	5.5	7
33	Detection of latent fingerprints based on gas phase adsorption of NO and subsequent application of an ultrasonically nebulized fluorescent probe. Analytical Methods, 2017, 9, 1611-1616.	2.7	6
34	Novel Long-Lifetime Iridium Complex as Lab-on-a-Molecule for Hg ²⁺ and pH-Activatable Probes. ACS Sustainable Chemistry and Engineering, 2017, 5, 4443-4448.	6.7	21
35	Recycling Strategy for Fabricating Low-Cost and High-Performance Carbon Nanotube TFT Devices. ACS Applied Materials & amp; Interfaces, 2017, 9, 15719-15726.	8.0	30
36	Copper nanoparticles modified nitrogen doped reduced graphene oxide 3-D superstructure for simultaneous determination of dihydroxybenzene isomers. Sensors and Actuators B: Chemical, 2017, 249, 405-413.	7.8	47

Qijun Song

#	Article	IF	CITATIONS
37	Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sensors and Actuators B: Chemical, 2017, 243, 203-210.	7.8	86
38	The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen. Mikrochimica Acta, 2017, 184, 3113-3119.	5.0	39
39	Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties. Journal of Hazardous Materials, 2017, 332, 124-131.	12.4	38
40	Sensitive Colorimetric Assay of H ₂ S Depending on the High-Efficient Inhibition of Catalytic Performance of Ru Nanoparticles. ACS Sustainable Chemistry and Engineering, 2017, 5, 7912-7919.	6.7	34
41	Dynamic Chiral Nanoparticle Assemblies and Specific Chiroplasmonic Analysis of Cancer Cells. Advanced Materials, 2016, 28, 4877-4883.	21.0	48
42	Synthesis of 2.5Ânm colloidal iridium nanoparticles with strong surface enhanced Raman scattering activity. Mikrochimica Acta, 2016, 183, 2047-2053.	5.0	19
43	One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells. Nano Research, 2015, 8, 1975-1986.	10.4	130
44	Au nanoflower–Ag nanoparticle assembled SERS-active substrates for sensitive MC-LR detection. Chemical Communications, 2015, 51, 16908-16911.	4.1	63