
Jean Farup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022612/publications.pdf Version: 2024-02-01

IFAN FADID

#	Article	IF	CITATIONS
1	Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy. Scandinavian Journal of Medicine and Science in Sports, 2015, 25, 754-763.	2.9	140
2	Differentiated <scp>mTOR</scp> but not <scp>AMPK</scp> signaling after strength vs endurance exercise in trainingâ€accustomed individuals. Scandinavian Journal of Medicine and Science in Sports, 2013, 23, 355-366.	2.9	89
3	Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scandinavian Journal of Medicine and Science in Sports, 2014, 24, 788-798.	2.9	84
4	Muscle Morphological and Strength Adaptations to Endurance Vs. Resistance Training. Journal of Strength and Conditioning Research, 2012, 26, 398-407.	2.1	68
5	Muscle strength and functional performance is markedly impaired at the recommended time point for sport return after anterior cruciate ligament reconstruction in recreational athletes. Human Movement Science, 2015, 39, 73-87.	1.4	60
6	Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids, 2014, 46, 2503-2516.	2.7	58
7	Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth. Journal of Applied Physiology, 2014, 117, 898-909.	2.5	55
8	Human skeletal muscle CD90+ fibro-adipogenic progenitors are associated with muscle degeneration in type 2 diabetic patients. Cell Metabolism, 2021, 33, 2201-2214.e10.	16.2	54
9	Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science, 2019, 366, 734-738.	12.6	53
10	Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy. Amino Acids, 2014, 46, 2377-2392.	2.7	39
11	Blood flow-restricted resistance exercise alters the surface profile, miRNA cargo and functional impact of circulating extracellular vesicles. Scientific Reports, 2020, 10, 5835.	3.3	35
12	Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. Journal of Applied Physiology, 2014, 116, 1491-1502.	2.5	29
13	Molecular and cellular adaptations to exercise training in skeletal muscle from cancer patients treated with chemotherapy. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1449-1460.	2.5	28
14	Exerciseâ€dependent increases in protein synthesis are accompanied by chromatin modifications and increased MRTFâ€SRF signalling. Acta Physiologica, 2020, 230, e13496.	3.8	27
15	Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Molecular Metabolism, 2021, 53, 101271.	6.5	27
16	Pericyte response to contraction mode-specific resistance exercise training in human skeletal muscle. Journal of Applied Physiology, 2015, 119, 1053-1063.	2.5	26
17	Role of Metabolic Stress and Exercise in Regulating Fibro/Adipogenic Progenitors. Frontiers in Cell and Developmental Biology, 2020, 8, 9.	3.7	24
18	Effect of resistance exercise contraction mode and protein supplementation on members of the STARS signalling pathway. Journal of Physiology, 2013, 591, 3749-3763.	2.9	22

Jean Farup

#	Article	IF	CITATIONS
19	No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise. Amino Acids, 2015, 47, 767-778.	2.7	22
20	Satellite cell response to erythropoietin treatment and endurance training in healthy young men. Journal of Physiology, 2016, 594, 727-743.	2.9	21
21	Contraction mode and whey protein intake affect the synthesis rate of intramuscular connective tissue. Muscle and Nerve, 2017, 55, 128-130.	2.2	20
22	Postactivation Potentiation: Upper Body Force Development Changes after Maximal Force Intervention. Journal of Strength and Conditioning Research, 2010, 24, 1874-1879.	2.1	19
23	The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle. Journal of Applied Physiology, 2015, 119, 900-907.	2.5	19
24	Effect of degree of hydrolysis of whey protein on in vivo plasma amino acid appearance in humans. SpringerPlus, 2016, 5, 382.	1.2	17
25	Efficient correction of Duchenne muscular dystrophy mutations by SpCas9 and dual gRNAs. Molecular Therapy - Nucleic Acids, 2021, 24, 403-415.	5.1	17
26	Similar changes in muscle fiber phenotype with differentiated consequences for rate of force development: Endurance versus resistance training. Human Movement Science, 2014, 34, 109-119.	1.4	16
27	Associated decrements in rate of force development and neural drive after maximal eccentric exercise. Scandinavian Journal of Medicine and Science in Sports, 2016, 26, 498-506.	2.9	16
28	Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions. PLoS ONE, 2015, 10, e0127808.	2.5	15
29	Effect of protein quality on recovery after intense resistance training. European Journal of Applied Physiology, 2016, 116, 2225-2236.	2.5	13
30	Skeletal muscle stem cell characteristics and myonuclei content in patients with rheumatoid arthritis: a cross-sectional study. Rheumatology International, 2018, 38, 1031-1041.	3.0	13
31	High Intensity Training May Reverse the Fiber Type Specific Decline in Myogenic Stem Cells in Multiple Sclerosis Patients. Frontiers in Physiology, 2016, 7, 193.	2.8	12
32	Mitochondrial Structure and Function in the Metabolic Myopathy Accompanying Patients with Critical Limb Ischemia. Cells, 2020, 9, 570.	4.1	12
33	Isolation and characterization of muscle stem cells, fibro-adipogenic progenitors, and macrophages from human skeletal muscle biopsies. American Journal of Physiology - Cell Physiology, 2021, 321, C257-C268.	4.6	9
34	Sex Hormones and Satellite Cell Regulation in Women. Translational Sports Medicine, 2022, 2022, 1-12.	1.1	3
35	<scp>AMPK</scp> vs <scp>mTORC</scp> 1 signaling: Genuine exercise effects of differentiated exercise in humans. Scandinavian Journal of Medicine and Science in Sports, 2012, 22, 580-581.	2.9	2
36	The role of satellite cells in activityâ€induced adaptations: breathing new life into the debate. Journal of Physiology, 2017, 595, 6225-6226.	2.9	2

	JEAN FAR	FARUP		
#	Article	IF	CITATIONS	
37	Skeletal muscle stem cell defects in burnâ€induced cachexia. Journal of Physiology, 2016, 594, 7153-7154.	2.9	Ο	