
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602225/publications.pdf Version: 2024-02-01

ΗΙΡΟΟΗΙ ΤΛΜΙΙΡΛ

#	Article	IF	CITATIONS
1	Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. Journal of Pineal Research, 2008, 44, 280-287.	7.4	541
2	Melatonin and the ovary: physiological and pathophysiological implications. Fertility and Sterility, 2009, 92, 328-343.	1.0	363
3	Melatonin and pregnancy in the human. Reproductive Toxicology, 2008, 25, 291-303.	2.9	233
4	Changes of serum melatonin level and its relationship to fetoâ€placental unit during pregnancy. Journal of Pineal Research, 2001, 30, 29-33.	7.4	186
5	The role of melatonin as an antioxidant in the follicle. Journal of Ovarian Research, 2012, 5, 5.	3.0	182
6	Melatonin as a free radical scavenger in the ovarian follicle [Review]. Endocrine Journal, 2013, 60, 1-13.	1.6	171
7	Longâ€ŧerm melatonin treatment delays ovarian aging. Journal of Pineal Research, 2017, 62, e12381.	7.4	164
8	Melatonin and the circadian system: contributions to successful female reproduction. Fertility and Sterility, 2014, 102, 321-328.	1.0	161
9	Pathophysiologic features of "thin―endometrium. Fertility and Sterility, 2009, 91, 998-1004.	1.0	141
10	Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertility and Sterility, 2003, 80, 1012-1016.	1.0	136
11	Endometrial growth and uterine blood flow: a pilot study for improving endometrial thickness in the patients with a thin endometrium. Fertility and Sterility, 2010, 93, 1851-1858.	1.0	134
12	Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. International Journal of Molecular Sciences, 2020, 21, 1135.	4.1	115
13	Melatonin and female reproduction. Journal of Obstetrics and Gynaecology Research, 2014, 40, 1-11.	1.3	112
14	Genome-Wide DNA Methylation Analysis Reveals a Potential Mechanism for the Pathogenesis and Development of Uterine Leiomyomas. PLoS ONE, 2013, 8, e66632.	2.5	86
15	Protective role of melatonin in progesterone production by human luteal cells. Journal of Pineal Research, 2011, 51, 207-213.	7.4	80
16	Genome-Wide Analysis of Histone Modifications in Human Endometrial Stromal Cells. Molecular Endocrinology, 2014, 28, 1656-1669.	3.7	72
17	Clinical relevance of melatonin in ovarian and placental physiology: a review. Gynecological Endocrinology, 2014, 30, 83-89.	1.7	69
18	Melatonin directly suppresses steroid production by preovulatory follicles in the cyclic hamster. Journal of Pineal Research, 1998, 25, 135-141.	7.4	67

#	Article	IF	CITATIONS
19	Changes in Histone Modification and DNA Methylation of the StAR and Cyp19a1 Promoter Regions in Granulosa Cells Undergoing Luteinization during Ovulation In Rats. Endocrinology, 2013, 154, 458-470.	2.8	65
20	Melatonin protects the integrity of granulosa cells by reducing oxidative stress in nuclei, mitochondria, and plasma membranes in mice. Journal of Reproduction and Development, 2015, 61, 35-41.	1.4	65
21	Melatonin treatment in peri―and postmenopausal women elevates serum highâ€density lipoprotein cholesterol levels without influencing total cholesterol levels. Journal of Pineal Research, 2008, 45, 101-105.	7.4	64
22	Progesterone Increases Manganese Superoxide Dismutase Expression via a cAMP-Dependent Signaling Mediated by Noncanonical Wnt5a Pathway in Human Endometrial Stromal Cells. Journal of Clinical Endocrinology and Metabolism, 2010, 95, E291-E299.	3.6	59
23	Pineal Gland(Melatonin) Affects the Parturition Time, but not Luteal Function and Fetal Growth, in Pregnant Rats Endocrine Journal, 2003, 50, 37-43.	1.6	49
24	Changes in blood-flow impedance of the human corpus luteum throughout the luteal phase and during early pregnancy. Fertility and Sterility, 2008, 90, 2334-2339.	1.0	48
25	Induction of IGFBP-1 Expression by cAMP Is Associated with Histone Acetylation Status of the Promoter Region in Human Endometrial Stromal Cells. Endocrinology, 2012, 153, 5612-5621.	2.8	47
26	Luteal blood flow and luteal function. Journal of Ovarian Research, 2009, 2, 1.	3.0	45
27	Thin endometrium transcriptome analysis reveals a potential mechanism of implantation failure. Reproductive Medicine and Biology, 2017, 16, 206-227.	2.4	43
28	Complications and outcomes of pregnant women with adenomyosis in Japan. Reproductive Medicine and Biology, 2017, 16, 330-336.	2.4	43
29	Combination of melatonin and a peroxisome proliferatorâ€activated receptorâ€Î³ agonist induces apoptosis in a breast cancer cell line. Journal of Pineal Research, 2009, 46, 115-116.	7.4	42
30	Reactive Oxygen Species and the Hypomotility of the Gall Bladder as Targets for the Treatment of Gallstones with Melatonin: A Review. Digestive Diseases and Sciences, 2008, 53, 2592-2603.	2.3	41
31	Importance of C/EBPÎ ² Binding and Histone Acetylation Status in the Promoter Regions for Induction of IGFBP-1, PRL, and Mn-SOD by cAMP in Human Endometrial Stromal Cells. Endocrinology, 2014, 155, 275-286.	2.8	41
32	Fetal/placental regulation of maternal melatonin in rats. Journal of Pineal Research, 2008, 44, 335-340.	7.4	39
33	Differential Effects of Progesterone on COX-2 and Mn-SOD Expressions Are Associated with Histone Acetylation Status of the Promoter Region in Human Endometrial Stromal Cells. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1073-E1082.	3.6	35
34	Epigenetic Changes of the Cyp11a1 Promoter Region in Granulosa Cells Undergoing Luteinization During Ovulation in Female Rats. Endocrinology, 2016, 157, 3344-3354.	2.8	35
35	Tissue-Specific Expression of Estrogen Receptor 1 Is Regulated by DNA Methylation in a T-DMR. Molecular Endocrinology, 2016, 30, 335-347.	3.7	31
36	The clinical outcome of Dienogest treatment followed by in vitro fertilization and embryo transfer in infertile women with endometriosis. Journal of Ovarian Research, 2019, 12, 123.	3.0	28

#	Article	IF	CITATIONS
37	Potential Mechanisms of Aberrant DNA Hypomethylation on the X Chromosome in Uterine Leiomyomas. Journal of Reproduction and Development, 2014, 60, 47-54.	1.4	27
38	The distal upstream region of insulin-like growth factor–binding protein-1 enhances its expression in endometrial stromal cells during decidualization. Journal of Biological Chemistry, 2018, 293, 5270-5280.	3.4	27
39	A pilot study to search possible mechanisms of ultralong gonadotropin-releasing hormone agonist therapy in IVF-ET patients with endometriosis. Journal of Ovarian Research, 2014, 7, 100.	3.0	25
40	Clinical outcomes of infertility treatment for women with adenomyosis in Japan. Reproductive Medicine and Biology, 2017, 16, 276-282.	2.4	25
41	Genome-wide DNA methylation analysis revealed stable DNA methylation status during decidualization in human endometrial stromal cells. BMC Genomics, 2019, 20, 324.	2.8	25
42	Novel Function of a Transcription Factor WT1 in Regulating Decidualization in Human Endometrial Stromal Cells and Its Molecular Mechanism. Endocrinology, 2017, 158, 3696-3707.	2.8	23
43	C/EBPβ regulates Vegf gene expression in granulosa cells undergoing luteinization during ovulation in female rats. Scientific Reports, 2019, 9, 714.	3.3	18
44	A pilot study to prevent a thin endometrium in patients undergoing clomiphene citrate treatment. Journal of Ovarian Research, 2013, 6, 94.	3.0	17
45	Angiogenesis in the human corpus luteum. Reproductive Medicine and Biology, 2008, 7, 91-103.	2.4	16
46	Changes in gene expression of histone modification enzymes in rat granulosa cells undergoing luteinization during ovulation. Journal of Ovarian Research, 2016, 9, 15.	3.0	16
47	Involvement of Bone Marrow-Derived Vascular Progenitor Cells in Neovascularization During Formation of the Corpus Luteum in Mice1. Biology of Reproduction, 2012, 87, 55.	2.7	14
48	Transcription factor C/EBPÎ ² induces genome-wide H3K27ac and upregulates gene expression during decidualization of human endometrial stromal cells. Molecular and Cellular Endocrinology, 2021, 520, 111085.	3.2	14
49	Glucose regulates the histone acetylation of gene promoters in decidualizing stromal cells. Reproduction, 2019, 157, 457-464.	2.6	14
50	Wilms tumor 1 regulates lipid accumulation in human endometrial stromal cells during decidualization. Journal of Biological Chemistry, 2020, 295, 4673-4683.	3.4	13
51	Pinealectomy or Melatonin Implantation Does Not Affect Prolactin Surge or Luteal Function in Pseudopregnant Rats Endocrine Journal, 1998, 45, 377-383.	1.6	12
52	The essential glucose transporter GLUT1 is epigenetically upregulated by C/EBPβ and WT1 during decidualization of the endometrium. Journal of Biological Chemistry, 2021, 297, 101150.	3.4	11
53	An Integrated Genomic Approach Identifies HOXC8 as an Upstream Regulator in Ovarian Endometrioma. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4474-e4489.	3.6	10
54	Integrated Analysis of Transcriptome and Histone Modifications in Granulosa Cells During Ovulation in Female Mice. Endocrinology, 2021, 162, .	2.8	9

#	Article	IF	CITATIONS
55	Relationship between follicular size and developmental capacity of oocytes under controlled ovarian hyperstimulation in assisted reproductive technologies. Reproductive Medicine and Biology, 2021, 20, 299-304.	2.4	7
56	Effects of Melatonin on the Transcriptome of Human Granulosa Cells, Fertilization and Blastocyst Formation. International Journal of Molecular Sciences, 2022, 23, 6731.	4.1	6
57	Transcriptional coactivator PGC-1α contributes to decidualization by forming a histone-modifying complex with C/EBPβ and p300. Journal of Biological Chemistry, 2022, , 101874.	3.4	4
58	Anti-Aging Medicine and Reproductive Health. Anti-aging Medicine, 2012, 9, 6-13.	0.7	2
59	Pregnancy Complications in Women with Adenomyosis. Comprehensive Gynecology and Obstetrics, 2018, , 163-173.	0.0	0