
Young Chul Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022234/publications.pdf Version: 2024-02-01

YOUNG CHUI LUN

#	Article	IF	CITATIONS
1	Suppression of halide migration and immobile ionic surface passivation for blue perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 2060-2066.	2.7	12
2	Light activation of 3D-printed structures: from millimeter to sub-micrometer scale. Nanophotonics, 2022, 11, 461-486.	2.9	12
3	Soft luminescent solar concentrator film with organic dye and rubbery matrix. Journal of Polymer Science, 2021, 59, 59-69.	2.0	3
4	Circularly Polarized Emission from Organic–Inorganic Hybrid Perovskites <i>via</i> Chiral Fano Resonances. ACS Nano, 2021, 15, 13781-13793.	7.3	28
5	High sensitivity bolometers based on metal nanoantenna dimers with a nanogap filled with vanadium dioxide. Scientific Reports, 2021, 11, 15863.	1.6	3
6	Topological Control of 2D Perovskite Emission in the Strong Coupling Regime. Nano Letters, 2021, 21, 10076-10085.	4.5	22
7	Multipole resonance and Vernier effect in compact and flexible plasmonic structures. Scientific Reports, 2021, 11, 22817.	1.6	1
8	3D and 4D Printing of Multistable Structures. Applied Sciences (Switzerland), 2020, 10, 7254.	1.3	14
9	Dichroic Sb 2 O 3 /Ag/Sb 2 O 3 Electrodes for Colorful Semitransparent Organic Solar Cells. Solar Rrl, 2020, 4, 2000201.	3.1	15
10	Tunable Resonance and Phase Vortices in Kirigami Fanoâ€Resonant Metamaterials. Advanced Materials Technologies, 2020, 5, 2000234.	3.0	5
11	3D and 4D printing for optics and metaphotonics. Nanophotonics, 2020, 9, 1139-1160.	2.9	48
12	Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation. Scientific Reports, 2020, 10, 6258.	1.6	73
13	Fourier-plane investigation of plasmonic bound states in the continuum and molecular emission coupling. Nanophotonics, 2020, 9, 4565-4577.	2.9	18
14	Geometry-Independent Excitation of Dark Modes Using Dipole Moment Transitions. IEEE Transactions on Antennas and Propagation, 2020, 68, 6172-6182.	3.1	4
15	3D printing of twisting and rotational bistable structures with tuning elements. Scientific Reports, 2019, 9, 324.	1.6	36
16	Multistable Thermal Actuators Via Multimaterial 4D Printing. Advanced Materials Technologies, 2019, 4, 1800495.	3.0	54
17	Sharp Fano Resonance and Spectral Collapse in Stimuliâ€Responsive Photonic Structures. Advanced Optical Materials, 2019, 7, 1801206.	3.6	4
18	Femtosecond laser irradiation of molecular excitonic films for nanophotonic response control and large-area patterning. Optics Express, 2019, 27, 18044.	1.7	4

Young Chul Jun

#	Article	IF	CITATIONS
19	Enhancement of sub-bandgap light absorption in perovskite semiconductor films via critical coupling. Optics Express, 2019, 27, 25293.	1.7	5
20	Electronâ€Beamâ€Induced Nanopatterning of Jâ€Aggregate Thin Films for Excitonic and Photonic Response Control. Advanced Optical Materials, 2018, 6, 1800583.	3.6	6
21	Strong Nonlinear Optical Response in the Visible Spectral Range with Epsilonâ€Nearâ€Zero Organic Thin Films. Advanced Optical Materials, 2018, 6, 1701400.	3.6	34
22	Surface bound waves and optical interactions in excitonic thin films. Optical Materials Express, 2018, 8, 2687.	1.6	4
23	Broadband epsilon–near–zero and epsilon–near–pole 1D nanograting metamaterials in near–infrared regimesl. , 2018, , .		0
24	Dispersion Control of Excitonic Thin Films for Tailored Superabsorption in the Visible Region. ACS Photonics, 2017, 4, 1138-1145.	3.2	19
25	Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene. Nano Letters, 2017, 17, 120-127.	4.5	120
26	Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators. Scientific Reports, 2017, 7, 16186.	1.6	14
27	Angle-dependent optical perfect absorption and enhanced photoluminescence in excitonic thin films. Optics Express, 2017, 25, 28619.	1.7	13
28	Active switching and tuning of sharp Fano resonances in the mid-infrared spectral region. Optics Express, 2016, 24, 25684.	1.7	18
29	General Strategy for Broadband Coherent Perfect Absorption and Multi-wavelength All-optical Switching Based on Epsilon-Near-Zero Multilayer Films. Scientific Reports, 2016, 6, 22941.	1.6	51
30	Broadband Coherent Perfect Absorption Device Based on Epsilon-Near-Zero Indium Tin Oxide Thin Films in the Near Infrared. , 2016, , .		0
31	Tunable Epsilon-Near-Zero ITO Thin Films and Broadband Perfect Absorption in the Near-Infrared. , 2016, , .		0
32	Broadband Epsilon-Near-Zero Perfect Absorption in the Near-Infrared. Scientific Reports, 2015, 5, 12788.	1.6	125
33	Tunable and broadband perfect absorption in epsilon-near-zero indium tin oxide thin films at near infrared wavelengths. , 2015, , .		1
34	Design of epsilon-near-zero coherent perfect absorption with indium tin oxide thin films using admittance matching method. , 2015, , .		1
35	Optical Magnetic Mirrors using All Dielectric Metasurfaces. , 2014, , .		0
36	Optical magnetic mirrors without metals. Optica, 2014, 1, 250.	4.8	188

YOUNG CHUL JUN

#	Article	IF	CITATIONS
37	Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement. Journal of Applied Physics, 2014, 115, .	1.1	2
38	Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Applied Physics Letters, 2014, 105, .	1.5	31
39	Directional perfect absorption using deep subwavelength low-permittivity films. Physical Review B, 2014, 90, .	1.1	111
40	Polarization-dependent photocurrent enhancement in metamaterial-coupled quantum dots-in-a-well infrared detectors. Optics Communications, 2014, 312, 31-34.	1.0	13
41	Admittance matching analysis of perfect absorption in unpatterned thin films. Optics Communications, 2014, 332, 206-213.	1.0	48
42	Transformation Optics and Invisibility Cloaking. New Physics: Sae Mulli, 2014, 64, 1045-1053.	0.0	0
43	Epsilon-Near-Zero Strong Coupling in Metamaterial-Semiconductor Hybrid Structures. Nano Letters, 2013, 13, 5391-5396.	4.5	178
44	Resonant wavelength tuning of localized plasmons in silver-aluminum nanoparticles. Journal of the Korean Physical Society, 2013, 63, 2098-2101.	0.3	3
45	Nanofocusing of light using three-dimensional plasmonic mode conversion. Optics Express, 2013, 21, 27816.	1.7	4
46	Demonstration of Dielectric Optical Magnetic Mirrors Using Phase-locked Infrared Time-domain Spectroscopy. , 2013, , .		1
47	Epsilon-Near-Zero Subwavelength Optoelectronics: Electrically Tunable ENZ Strong Coupling. , 2013, , .		1
48	Polarization-dependent photocurrent enhancement in metamaterial-integrated quantum dot infrared detectors. , 2012, , .		0
49	Active tuning of mid-infrared metamaterials by electrical control of carrier densities. Optics Express, 2012, 20, 1903.	1.7	64
50	Electrically tunable infrared metamaterials based on depletion-type semiconductor devices. Journal of Optics (United Kingdom), 2012, 14, 114013.	1.0	26
51	Optical Manipulation with Plasmonic Beam Shaping Antenna Structures. Advances in OptoElectronics, 2012, 2012, 1-6.	0.6	1
52	Electrically-Controlled Thermal Infrared Metamaterial Devices. , 2012, , .		0
53	Power flow from a dipole emitter near an optical antenna. Optics Express, 2011, 19, 19084.	1.7	27
54	Modification of the spontaneous emission rate of nitrogen-vacancy centers in diamond by coupling to plasmons. , 2011, , .		1

4

YOUNG CHUL JUN

#	Article	IF	CITATIONS
55	Plasmonic beaming and active control over fluorescent emission. Nature Communications, 2011, 2, 283.	5.8	176
56	Electrifying plasmonics on silicon. Nature Materials, 2010, 9, 3-4.	13.3	73
57	Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9, 193-204.	13.3	3,773
58	High Excitation Transfer Efficiency from Energy Relay Dyes in Dye-Sensitized Solar Cells. Nano Letters, 2010, 10, 3077-3083.	4.5	97
59	Strong Modification of Quantum Dot Spontaneous Emission via Gap Plasmon Coupling in Metal Nanoslits. Journal of Physical Chemistry C, 2010, 114, 7269-7273.	1.5	49
60	Plasmon-enhanced emission from optically-doped MOS light sources. Optics Express, 2009, 17, 185.	1.7	29
61	Broadband enhancement of light emission in silicon slot waveguides. Optics Express, 2009, 17, 7479.	1.7	83
62	Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures. Physical Review B, 2008, 78, .	1.1	154
63	NANOPLASMONICS: COMPONENTS, DEVICES, AND CIRCUITS. , 0, , 405-438.		2