
Yuki Tobimatsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022166/publications.pdf Version: 2024-02-01

VIIKI TORIMATSH

#	Article	IF	CITATIONS
1	Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity. Autophagy, 2023, 19, 597-615.	9.1	14
2	Structural basis of lignocellulose deconstruction by the wood-feeding anobiid beetle Nicobium hirtum. Journal of Wood Science, 2022, 68, .	1.9	2
3	Deficiency in flavonoid biosynthesis genes <i>CHS</i> , <i>CHI</i> , and <i>CHIL</i> alters rice flavonoid and lignin profiles. Plant Physiology, 2022, 188, 1993-2011.	4.8	18
4	Reaction Selectivity in Electro-oxidation of Lignin Dimer Model Compounds and Synthetic Lignin with Different Mediators for the Laccase Mediator System (PZH, NHPI, ABTS). ACS Sustainable Chemistry and Engineering, 2022, 10, 6633-6641.	6.7	4
5	Limiting silicon supply alters lignin content and structures of sorghum seedling cell walls. Plant Science, 2022, 321, 111325.	3.6	10
6	Termite Gut Microbiota Contribution to Wheat Straw Delignification in Anaerobic Bioreactors. ACS Sustainable Chemistry and Engineering, 2021, 9, 2191-2202.	6.7	33
7	Fractionation and Characterization of Glycol Lignins by Stepwise-pH Precipitation of Japanese Cedar/Poly(ethylene glycol) Solvolysis Liquor. ACS Sustainable Chemistry and Engineering, 2021, 9, 756-764.	6.7	6
8	Localised laccase activity modulates distribution of lignin polymers in gymnosperm compression wood. New Phytologist, 2021, 230, 2186-2199.	7.3	23
9	Monolignol acyltransferase for lignin p-hydroxybenzoylation in Populus. Nature Plants, 2021, 7, 1288-1300.	9.3	30
10	Tricin Biosynthesis and Bioengineering. Frontiers in Plant Science, 2021, 12, 733198.	3.6	25
11	Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell, 2021, 33, 129-152.	6.6	13
12	Incorporation of catechyl monomers into lignins: lignification from the non-phenolic end <i>via</i> Diels–Alder cycloaddition?. Green Chemistry, 2021, 23, 8995-9013.	9.0	6
13	New Insights on Structures Forming the Lignin-Like Fractions of Ancestral Plants. Frontiers in Plant Science, 2021, 12, 740923.	3.6	17
14	Nitrogen deficiency results in changes to cell wall composition of sorghum seedlings. Scientific Reports, 2021, 11, 23309.	3.3	8
15	Fibreâ€specific regulation of lignin biosynthesis improves biomass quality in <i>Populus</i> . New Phytologist, 2020, 226, 1074-1087.	7.3	43
16	Lignin-Inspired Surface Modification of Nanocellulose by Enzyme-Catalyzed Radical Coupling of Coniferyl Alcohol in Pickering Emulsion. ACS Sustainable Chemistry and Engineering, 2020, 8, 1185-1194.	6.7	17
17	The Arabidopsis R2R3 MYB Transcription Factor MYB15 Is a Key Regulator of Lignin Biosynthesis in Effector-Triggered Immunity. Frontiers in Plant Science, 2020, 11, 583153.	3.6	51
18	Plant-specific Dof transcription factors VASCULAR-RELATED DOF1 and VASCULAR-RELATED DOF2 regulate vascular cell differentiation and lignin biosynthesis in Arabidopsis. Plant Molecular Biology, 2020, 104, 263-281.	3.9	14

#	Article	IF	CITATIONS
19	MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology, 2020, 24, 100174.	4.7	21
20	Effect of Heat Treatment on the Chemical Structure and Thermal Properties of Softwood-Derived Glycol Lignin. Molecules, 2020, 25, 1167.	3.8	8
21	Possible mechanisms for the generation of phenyl glycosideâ€ŧype lignin–carbohydrate linkages in lignification with monolignol glucosides. Plant Journal, 2020, 104, 156-170.	5.7	18
22	Convergent recruitment of 5′â€hydroxylase activities by CYP75B flavonoid Bâ€ring hydroxylases for tricin biosynthesis in <i>Medicago</i> legumes. New Phytologist, 2020, 228, 269-284.	7.3	25
23	Double knockout of OsWRKY36 and OsWRKY102 boosts lignification with altering culm morphology of rice. Plant Science, 2020, 296, 110466.	3.6	21
24	Methylation-triggered fractionation of lignocellulosic biomass to afford cellulose-, hemicellulose-, and lignin-based functional polymers <i>via</i> click chemistry. Green Chemistry, 2020, 22, 2909-2928.	9.0	18
25	Identifying transcription factors that reduce wood recalcitrance and improve enzymatic degradation of xylem cell wall in Populus. Scientific Reports, 2020, 10, 22043.	3.3	9
26	OsCAldOMT1 is a bifunctional O-methyltransferase involved in the biosynthesis of tricin-lignins in rice cell walls. Scientific Reports, 2019, 9, 11597.	3.3	35
27	Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 2019, 142, 111840.	5.2	15
28	The Structural Integrity of Lignin Is Crucial for Resistance against <i>Striga hermonthica</i> Parasitism in Rice. Plant Physiology, 2019, 179, 1796-1809.	4.8	60
29	Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition. Journal of Wood Science, 2019, 65, .	1.9	19
30	Recruitment of specific flavonoid Bâ€ring hydroxylases for two independent biosynthesis pathways of flavoneâ€derived metabolites in grasses. New Phytologist, 2019, 223, 204-219.	7.3	38
31	Structural features of alternative lignin monomers associated with improved digestibility of artificially lignified maize cell walls. Plant Science, 2019, 287, 110070.	3.6	14
32	Os <scp>MYB</scp> 108 lossâ€ofâ€function enriches <i>p</i> â€coumaroylated and tricin lignin units in rice cell walls. Plant Journal, 2019, 98, 975-987.	5.7	57
33	Ligninâ€based barrier restricts pathogens to the infection site and confers resistance in plants. EMBO Journal, 2019, 38, e101948.	7.8	198
34	Altered lignocellulose chemical structure and molecular assembly in CINNAMYL ALCOHOL DEHYDROGENASE-deficient rice. Scientific Reports, 2019, 9, 17153.	3.3	25
35	Lignin polymerization: how do plants manage the chemistry so well?. Current Opinion in Biotechnology, 2019, 56, 75-81.	6.6	212
36	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	5.7	40

#	Article	IF	CITATIONS
37	Twoâ€dimensional NMR analysis of <scp><i>Angiopteris evecta</i></scp> rhizome and improved extraction method for angiopteroside. Phytochemical Analysis, 2019, 30, 95-100.	2.4	7
38	Host lignin composition affects haustorium induction in the parasitic plants <i>Phtheirospermum japonicum</i> and <i>Striga hermonthica</i> . New Phytologist, 2018, 218, 710-723.	7.3	64
39	NMR studies on lignocellulose deconstructions in the digestive system of the lower termite Coptotermes formosanus Shiraki. Scientific Reports, 2018, 8, 1290.	3.3	39
40	A comparative study of the biomass properties of <i>Erianthus</i> and sugarcane: lignocellulose structure, alkaline delignification rate, and enzymatic saccharification efficiency. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1143-1152.	1.3	14
41	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	10.3	184
42	Isolation and Characterization of Polyethylene Glycol (PEG)-Modified Glycol Lignin via PEG Solvolysis of Softwood Biomass in a Large-Scale Batch Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 7841-7848.	6.7	25
43	Comparative analysis of lignin chemical structures of sugarcane bagasse pretreated by alkaline, hydrothermal, and dilute sulfuric acid methods. Industrial Crops and Products, 2018, 121, 124-131.	5.2	54
44	Downregulation of pâ€ <i><scp>COUMAROYL ESTER</scp> 3â€< scp>HYDROXYLASE</i> in rice leads to altered cell wall structures and improves biomass saccharification. Plant Journal, 2018, 95, 796-811.	5.7	65
45	Regulation of CONIFERALDEHYDE 5-HYDROXYLASE expression to modulate cell wall lignin structure in rice. Planta, 2017, 246, 337-349.	3.2	76
46	Lignin Functionalization through Chemical Demethylation: Preparation and Tannin-Like Properties of Demethylated Guaiacyl-Type Synthetic Lignins. ACS Sustainable Chemistry and Engineering, 2017, 5, 5424-5431.	6.7	72
47	Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. Plant Physiology, 2017, 174, 972-985.	4.8	89
48	A "Double Click―for Illuminating Plant Cell Walls. Cell Chemical Biology, 2017, 24, 246-247.	5.2	0
49	Effects of lignins as diet components on the physiological activities of a lower termite, Coptotermes formosanus Shiraki. Journal of Insect Physiology, 2017, 103, 57-63.	2.0	6
50	The effects of various lignocelluloses and lignins on physiological responses of a lower termite, Coptotermes formosanus. Journal of Wood Science, 2017, 63, 464-472.	1.9	14
51	MYB-mediated upregulation of lignin biosynthesis in <i>Oryza sativa</i> towards biomass refinery. Plant Biotechnology, 2017, 34, 7-15.	1.0	44
52	Title is missing!. Kagaku To Seibutsu, 2016, 54, 156-158.	0.0	0
53	Introduction of chemically labile substructures into <i>Arabidopsis</i> lignin through the use of LigD, the Cαâ€dehydrogenase from <i>Sphingobium</i> sp. strain <scp>SYK</scp> â€6. Plant Biotechnology Journal, 2015, 13, 821-832.	8.3	45
54	Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6218-6223.	7.1	98

#	Article	IF	CITATIONS
55	Manipulation of Guaiacyl and Syringyl Monomer Biosynthesis in an Arabidopsis Cinnamyl Alcohol Dehydrogenase Mutant Results in Atypical Lignin Biosynthesis and Modified Cell Wall Structure. Plant Cell, 2015, 27, 2195-2209.	6.6	136
56	Structureâ€guided analysis of catalytic specificity of the abundantly secreted chitosanase SACTE_5457 from <i>Streptomyces</i> sp. SirexAAâ€E. Proteins: Structure, Function and Bioinformatics, 2014, 82, 1245-1257.	2.6	33
57	Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem. Plant Physiology, 2014, 166, 798-807.	4.8	203
58	A click chemistry strategy for visualization of plant cell wall lignification. Chemical Communications, 2014, 50, 12262-12265.	4.1	39
59	Emulsifying properties of an arabinoxylan–protein gum from distillers' grains and the co-production of animal feed. Cellulose, 2014, 21, 3623-3635.	4.9	21
60	Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant. Nature, 2014, 509, 376-380.	27.8	313
61	Film-forming polymers from distillers' grains: structural and material properties. Industrial Crops and Products, 2014, 59, 282-289.	5.2	34
62	Novel seed coat lignins in the <scp>C</scp> actaceae: structure, distribution and implications for the evolution of lignin diversity. Plant Journal, 2013, 73, 201-211.	5.7	121
63	Suppression of CCR impacts metabolite profile and cell wall composition in Pinus radiata tracheary elements. Plant Molecular Biology, 2013, 81, 105-117.	3.9	42
64	Visualization of plant cell wall lignification using fluorescenceâ€ŧagged monolignols. Plant Journal, 2013, 76, 357-366.	5.7	70
65	Coexistence but Independent Biosynthesis of Catechyl and Guaiacyl/Syringyl Lignin Polymers in Seed Coats. Plant Cell, 2013, 25, 2587-2600.	6.6	161
66	Loss of function of cinnamyl alcohol dehydrogenase 1 leads to unconventional lignin and a temperature-sensitive growth defect in <i>Medicago truncatula</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13660-13665.	7.1	115
67	A polymer of caffeyl alcohol in plant seeds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1772-1777.	7.1	314
68	Epigallocatechin gallate incorporation into lignin enhances the alkaline delignification and enzymatic saccharification of cell walls. Biotechnology for Biofuels, 2012, 5, 59.	6.2	35
69	Hydroxycinnamate Conjugates as Potential Monolignol Replacements: Inâ€vitro Lignification and Cell Wall Studies with Rosmarinic Acid. ChemSusChem, 2012, 5, 676-686.	6.8	54
70	Evaluation of Electron Temperature Fluctuations Using a Conditional Technique. Plasma and Fusion Research, 2012, 7, 2401133-2401133.	0.7	0
71	Fluorescence-Tagged Monolignols: Synthesis, and Application to Studying In Vitro Lignification. Biomacromolecules, 2011, 12, 1752-1761.	5.4	37
72	<i>CCoAOMT</i> suppression modifies lignin composition in <i>Pinus radiata</i> . Plant Journal, 2011, 67, 119-129.	5.7	136

#	Article	IF	CITATIONS
73	Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization I: high-yield production of synthetic lignins (DHPs) in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol in the presence of nucleophilic reagents. Journal of Wood Science, 2010, 56, 233-241.	1.9	15
74	Reactivity of syringyl quinone methide intermediates in dehydrogenative polymerization. Part 2: pH effect in horseradish peroxidase-catalyzed polymerization of sinapyl alcohol. Holzforschung, 2010, 64, .	1.9	7
75	Studies on the dehydrogenative polymerization of monolignol β-glycosides. Part 6: Monitoring of horseradish peroxidase-catalyzed polymerization of monolignol glycosides by GPC-PDA. Holzforschung, 2010, 64, .	1.9	8
76	Azide ion as a quinone methide scavenger in the horseradish peroxidasecatalyzed polymerization of sinapyl alcohol. Journal of Wood Science, 2008, 54, 87-89.	1.9	8
77	Studies on the Dehydrogenative Polymerizations of Monolignol β-glycosides. Part 3: Horseradish Peroxidase-Catalyzed Polymerizations of Triandrin and Isosyringin. Journal of Wood Chemistry and Technology, 2008, 28, 69-83.	1.7	19
78	Studies on the dehydrogenative polymerizations (DHPs) of monolignol β-glycosides: Part 4. Horseradish peroxidase-catalyzed copolymerization of isoconiferin and isosyringin. Holzforschung, 2008, 62, 495-500.	1.9	16
79	Studies on the dehydrogenative polymerization of monolignol β-glycosides: Part 5. UV spectroscopic monitoring of horseradish peroxidase-catalyzed polymerization of monolignol glycosides. Holzforschung, 2008, 62, 501-507.	1.9	10
80	Studies on the Dehydrogenative Polymerizations of Monolignol βâ€Clycosides. Part 1. Syntheses of Monolignol βâ€glycosides, (E)â€Isoconiferin, (E)â€Isosyringin, and (E)â€Triandrin. Journal of Wood Chemistry and Technology, 2006, 26, 215-229.	1.7	17
81	Studies on the dehydrogenative polymerizations of monolignol β-glycosides. Part 2: Horseradish peroxidase-catalyzed dehydrogenative polymerization of isoconiferin. Holzforschung, 2006, 60, 513-518.	1.9	21