
Betania Ferraz Quirino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Molecular Biology, 1998, 37, 455-469.	2.0	550
2	Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Molecular Biology, 1999, 40, 267-278.	2.0	283
3	Analysis of the <i>Arabidopsis</i> Histidine Kinase ATHK1 Reveals a Connection between Vegetative Osmotic Stress Sensing and Seed Maturation Â. Plant Cell, 2008, 20, 1101-1117.	3.1	222
4	Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnology for Biofuels, 2012, 5, 48.	6.2	186
5	Biodiesel production in Brazil and alternative biomass feedstocks. Renewable and Sustainable Energy Reviews, 2013, 21, 411-420.	8.2	185
6	Molecular Markers Reveal Limited Genetic Diversity in a Large Germplasm Collection of the Biofuel Crop <i>Jatropha curcas</i> L. in Brazil. Crop Science, 2010, 50, 2372-2382.	0.8	93
7	One of two tandem Arabidopsis genes homologous to monosaccharide transporters is senescence-associated. Plant Molecular Biology, 2001, 46, 447-457.	2.0	90
8	Proteomic approaches to study plant–pathogen interactions. Phytochemistry, 2010, 71, 351-362.	1.4	90
9	Bacteria and Archaea community structure in the rumen microbiome of goats (Capra hircus) from the semiarid region of Brazil. Anaerobe, 2011, 17, 118-124.	1.0	81
10	Characterization of Soil Bacterial Assemblies in Brazilian Savanna-Like Vegetation Reveals Acidobacteria Dominance. Microbial Ecology, 2012, 64, 760-770.	1.4	76
11	Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnology for Biofuels, 2014, 7, 15.	6.2	65
12	Plant cyclotides: An unusual class of defense compounds. Peptides, 2007, 28, 1475-1481.	1.2	61
13	Deciphering host resistance and pathogen virulence: the Arabidopsis /Pseudomonas interaction as a model. Molecular Plant Pathology, 2003, 4, 517-530.	2.0	57
14	Acidobacteria from oligotrophic soil from the Cerrado can grow in a wide range of carbon source concentrations. Canadian Journal of Microbiology, 2013, 59, 746-753.	0.8	53
15	Molecular phylogenetic diversity of bacteria associated with soil of the savanna-like Cerrado vegetation. Microbiological Research, 2009, 164, 59-70.	2.5	52
16	Microbial Diversity in Cerrado Biome (Neotropical Savanna) Soils. PLoS ONE, 2016, 11, e0148785.	1.1	52
17	Diversity of soil fungal communities of Cerrado and its closely surrounding agriculture fields. Archives of Microbiology, 2008, 190, 129-39.	1.0	50
18	Deconstruction of Lignin: From Enzymes to Microorganisms. Molecules, 2021, 26, 2299.	1.7	43

#	Article	IF	CITATIONS
19	Microbial diversity in sugarcane ethanol production in a Brazilian distillery using a culture-independent method. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 73-84.	1.4	41
20	Physiological and Proteomic Analyses of Saccharum spp. Grown under Salt Stress. PLoS ONE, 2014, 9, e98463.	1.1	39
21	Identification of E. dysenterica laxative peptide: A novel strategy in the treatment of chronic constipation and irritable bowel syndrome. Peptides, 2010, 31, 1426-1433.	1.2	38
22	Functional Metagenomics as a Tool for Identification of New Antibiotic Resistance Genes from Natural Environments. Microbial Ecology, 2017, 73, 479-491.	1.4	36
23	Characterization of Clostridium thermocellum (B8) secretome and purified cellulosomes for lignocellulosic biomass degradation. Enzyme and Microbial Technology, 2017, 97, 43-54.	1.6	32
24	Soil Acidobacterial 16S rRNA Gene Sequences Reveal Subgroup Level Differences between Savanna-Like Cerrado and Atlantic Forest Brazilian Biomes. International Journal of Microbiology, 2014, 2014, 1-12.	0.9	30
25	Combining "Omics―Strategies to Analyze the Biotechnological Potential of Complex Microbial Environments. Current Protein and Peptide Science, 2013, 14, 447-458.	0.7	26
26	Discovery of two novel β-glucosidases from an Amazon soil metagenomic library. FEMS Microbiology Letters, 2014, 351, 147-155.	0.7	25
27	Characterization of sugarcane (Saccharum spp.) leaf senescence: implications for biofuel production. Biotechnology for Biofuels, 2016, 9, 153.	6.2	25
28	New dioxygenase from metagenomic library from Brazilian soil: insights into antibiotic resistance and bioremediation. Biotechnology Letters, 2015, 37, 1809-1817.	1.1	21
29	Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease. PLoS ONE, 2018, 13, e0191884.	1.1	19
30	Molecular Identification of Four Different α-amylase Inhibitors from Baru (Dipteryx alata) Seeds with Activity Toward Insect Enzymes. BMB Reports, 2007, 40, 494-500.	1.1	19
31	Construction and validation of two metagenomic DNA libraries from Cerrado soil with high clay content. Biotechnology Letters, 2011, 33, 2169-2175.	1.1	16
32	Diversity of Brazilian biovar 2 strains of Ralstonia solanacearum. Journal of General Plant Pathology, 2012, 78, 190-200.	0.6	16
33	Recombinant expression of Thermobifida fusca E7 LPMO in Pichia pastoris and Escherichia coli and their functional characterization. Carbohydrate Research, 2017, 448, 175-181.	1.1	16
34	Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8. Enzyme and Microbial Technology, 2018, 109, 74-83.	1.6	16
35	Identification and functional analysis of Arabidopsis proteins that interact with resistance gene product RPS2 in yeast. Physiological and Molecular Plant Pathology, 2004, 65, 257-267.	1.3	14
36	Proteomic evaluation of coffee zygotic embryos in two different stages of seed development. Plant Physiology and Biochemistry, 2009, 47, 1046-1050.	2.8	13

Betania Ferraz Quirino

#	Article	IF	CITATIONS
37	Growth and expression of relevant metabolic genes of <i>Clostridium thermocellum</i> cultured on lignocellulosic residues. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 825-834.	1.4	11
38	Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS ONE, 2021, 16, e0255083.	1.1	11
39	Seasonal Effects in a Lake Sediment Archaeal Community of the Brazilian Savanna. Archaea, 2014, 2014, 1-9.	2.3	10
40	Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm. Archaea, 2016, 2016, 1-14.	2.3	10
41	Seasonal Variations in Soil Microbiota Profile of Termite (Syntermes wheeleri) Mounds in the Brazilian Tropical Savanna. Microorganisms, 2020, 8, 1482.	1.6	10
42	Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome. Scientific Reports, 2016, 6, 38031.	1.6	9
43	Functional and structural characterization of a novel GH3 β-glucosidase from the gut metagenome of the Brazilian Cerrado termite Syntermes wheeleri. International Journal of Biological Macromolecules, 2020, 165, 822-834.	3.6	9
44	Identification of an α-Amylase Inhibitor from Pterodon pubescens with Ability To Inhibit Cowpea Weevil Digestive Enzymes. Journal of Agricultural and Food Chemistry, 2007, 55, 4382-4387.	2.4	8
45	Unraveling the xylanolytic potential of Acidobacteria bacterium AB60 from Cerrado soils. FEMS Microbiology Letters, 2020, 367, .	0.7	8
46	Xanthomonas gardneri exoenzymatic activity towards plant tissue. World Journal of Microbiology and Biotechnology, 2008, 24, 163-170.	1.7	6
47	Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases. Biotechnology for Biofuels, 2019, 12, 174.	6.2	6
48	Identification and functional expression of a new xylose isomerase from the goat rumen microbiome in Saccharomyces cerevisiae. Letters in Applied Microbiology, 2022, 74, 941-948.	1.0	4
49	Critical Analysis of Feedstock Availability and Composition, and New Potential Resources for Biodiesel Production in Brazil. , 2014, , 331-350.		3
50	Functional screening of a Caatinga goat (Capra hircus) rumen metagenomic library reveals a novel GH3 β-xylosidase. PLoS ONE, 2021, 16, e0245118.	1.1	3
51	Senescence and Genetic Engineering. , 2004, , 91-105.		2
52	Targeted Metabolomics of Xylose-Fermenting Yeasts Based on Mass Spectrometry. Methods in Molecular Biology, 2019, 1859, 155-169.	0.4	1
53	Natural variability in Arabidopsis thaliana germplasm response to Xanthomonas campestris pv. campestris. Tropical Plant Pathology, 2007, 32, 97-103.	0.3	1

#	Article	IF	CITATIONS
55	Oil Palm Fatal Yellowing (FY), a Disease with an Elusive Causal Agent. , 0, , .		Ο
56	Evaluation of Arabidopsis thaliana response to infection by Tomato spotted wilt virusand Groundnut ringspot virus. Tropical Plant Pathology, 2006, 31, 101-101.	0.3	0