Koh-ichi Sugimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6021702/publications.pdf

Version: 2024-02-01

72 papers

2,146 citations

331670 21 h-index 243625 44 g-index

73 all docs

73 docs citations

73 times ranked 781 citing authors

#	Article	IF	CITATIONS
1	Effects of Thermomechanical Processing on Hydrogen Embrittlement Properties of UltraHigh-Strength TRIP-Aided Bainitic Ferrite Steels. Metals, 2022, 12, 269.	2.3	1
2	Recent Progress of Low and Medium-Carbon Advanced Martensitic Steels. Metals, 2021, 11, 652.	2.3	8
3	Influence of Cooling Process Routes after Intercritical Annealing on Impact Toughness of Duplex Type Medium Mn Steel. Metals, 2021, 11, 1143.	2.3	2
4	Cold Formabilities of Martensite-Type Medium Mn Steel. Metals, 2021, 11, 1371.	2.3	2
5	Effects of Alloying Elements Addition on Delayed Fracture Properties of Ultra High-Strength TRIP-Aided Martensitic Steels. Metals, 2020, 10, 6.	2.3	21
6	Performance of Mechanical Properties of Ultrahigh-Strength Ferrous Steels Related to Strain-Induced Transformation. Metals, 2020, 10, 875.	2.3	2
7	Effects of double quenching on fatigue properties of high carbon bearing steel with extra-high purity. International Journal of Fatigue, 2019, 128, 105176.	5.7	22
8	Low and Medium Carbon Advanced High-Strength Forging Steels for Automotive Applications. Metals, 2019, 9, 1263.	2.3	19
9	Effects of Cr and Mo on Mechanical Properties of Hot-Forged Medium Carbon TRIP-Aided Bainitic Ferrite Steels. Metals, 2019, 9, 1066.	2.3	17
10	Effects of Fine Particle Peening Conditions on the Rotational Bending Fatigue Strength of a Vacuum-Carburized Transformation-Induced Plasticity-Aided Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 1552-1560.	2.2	9
11	Fatigue strength of a vacuum-carburised TRIP-aided martensitic steel. Materials Science and Technology, 2018, 34, 743-750.	1.6	4
12	Surface-hardened Layer Properties of Newly Developed Case-hardening Steel. ISIJ International, 2018, 58, 727-733.	1.4	3
13	An Overview of Fatigue Strength of Case-Hardening TRIP-Aided Martensitic Steels. Metals, 2018, 8, 355.	2.3	11
14	Effects of Mn Content on the Warm Stretch-Flangeabiliy of C-Si-Mn TRIP-Aided Steels. Steel Research International, 2017, 88, 1600482.	1.8	3
15	Warm Formability of 0.2ÂPct C-1.5ÂPct Si-5ÂPct Mn Transformation-Induced Plasticity-Aided Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2237-2246.	2.2	7
16	Effects of fine particle peening on fatigue strength of a TRIP-aided martensitic steel. International Journal of Fatigue, 2017, 100, 206-214.	5.7	17
17	Critical assessment 29: TRIP-aided bainitic ferrite steels. Materials Science and Technology, 2017, 33, 2005-2009.	1.6	25
18	Effects of Vacuum-Carburizing Conditions on Surface-Hardened Layer Properties of Transformation-Induced Plasticity-Aided Martensitic Steel. Metals, 2017, 7, 301.	2.3	10

#	Article	IF	Citations
19	Torsional Fatigue Strength of Newly Developed Case Hardening TRIP-Aided Steel. Metals, 2017, 7, 375.	2.3	8
20	Fatigue Hardening Behavior of 1.5ÂGPa Grade Transformation-Induced Plasticity-Aided Martensitic Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5272-5279.	2.2	12
21	Impact Toughness of 0.2ÂPct C-1.5ÂPct Si-(1.5 to 5)ÂPct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2073-2080.	2.2	14
22	Corrosion Behavior of TiC and (Ti,W)C-Reinforced Fe-17Mn and Fe-17Mn-3Al Austenitic Steel Matrix In Situ Composites. Metallography, Microstructure, and Analysis, 2015, 4, 371-380.	1.0	1
23	Impact Toughness of Mediumâ€Mn Transformationâ€Induced Plasticityâ€Aided Steels. Steel Research International, 2015, 86, 1151-1160.	1.8	44
24	Effects of Fine Particle Peening on Fatigue Properties of TRIP-Aided Bainitic Ferrite Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 620-627.	0.2	9
25	Microstructure and Mechanical Properties of a TRIP-Aided Martensitic Steel. Metallography, Microstructure, and Analysis, 2015, 4, 344-354.	1.0	33
26	Effects of Fine Particle Peening on Torsional Fatigue Strength of a TRIP-aided Bainitic Ferrite Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 853-858.	0.2	0
27	The Effects of Fine Particle Peening on Surface Residual Stress of a TRIP-Aided Bainitic Ferrite Steel. Zairyo/Journal of the Society of Materials Science, Japan, 2014, 63, 662-668.	0.2	11
28	Effects of Microalloying on Stretch-flangeability of Ultrahigh-strength TRIP-aided Martensitic Steel Sheets. ISIJ International, 2014, 54, 1943-1951.	1.4	24
29	Cold Formability of 22SiMnCrB TRIP-aided Martensitic Sheet Steel. Procedia Engineering, 2014, 81, 1336-1341.	1.2	9
30	Fracture Toughness of an Advanced Ultrahigh-strength TRIP-aided Steel. ISIJ International, 2014, 54, 955-962.	1.4	26
31	Effects of Microalloying on the Impact Toughness of Ultrahigh-Strength TRIP-Aided Martensitic Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5006-5017.	2.2	40
32	Notch-fatigue Strength of Advanced TRIP-aided Martensitic Steels. ISIJ International, 2013, 53, 1479-1486.	1.4	21
33	Microstructure and Retained Austenite Characteristics of Ultra High-strength TRIP-aided Martensitic Steels. ISIJ International, 2012, 52, 1124-1129.	1.4	46
34	Effects of the Addition of Cr, Mo and Ni on the Microstructure and Retained Austenite Characteristics of 0.2% C^ ^ndash;Si^ ^ndash;Mn^ ^ndash;Nb Ultrahigh-strength TRIP-aided Bainitic Ferrite Steels. ISIJ International, 2012, 52, 1894-1901.	1.4	34
35	Notch-Fatigue Properties of Advanced TRIP-Aided Bainitic Ferrite Steels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4129-4136.	2.2	28
36	Formability of Al–Nb Bearing Ultra High-strength TRIP-aided Sheet Steels with Bainitic Ferrite and/or Martensite Matrix. ISIJ International, 2010, 50, 162-168.	1.4	53

#	Article	IF	CITATIONS
37	Effect of YAG Laser Cutting on Stretch-flangeability of Ultra High Strength TRIP Sheet Steel with Bainitic Ferrite Matrix. ISIJ International, 2010, 50, 1441-1446.	1.4	19
38	OS0623 Development of Glassy Carbon Reinforced by Carbon Nanofiber. The Proceedings of the Materials and Mechanics Conference, 2009, 2009, 249-250.	0.0	0
39	Characteristics of PP/VGCF Composite Films with Highly Orientated Vapor Grown Carbon Nanofiber by Extruding and Drawing Process. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 662-668.	0.2	0
40	Effects of Aluminum on Delayed Fracture Properties of Ultra High Strength Low Alloy TRIP-aided Steels. ISIJ International, 2008, 48, 824-829.	1.4	71
41	The Study of the Imprint Mold Materials Suited for B2O3-La2O3 Based Glass. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 431-434.	0.1	0
42	Development of high thermal conductivity Al-Si/C/VGCF composites with ONGCF foam. Tanso, 2007, 2007, 233-236.	0.1	4
43	Development of highly graphitizable C/VGCF porous foams. Tanso, 2007, 2007, 200-205.	0.1	0
44	Hydrogen Embrittlement Properties of Ultra High-strength Low Alloy TRIP-aided Steels with Bainitic Ferrite Matrix. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2006, 92, 83-89.	0.4	17
45	Acoustic Emission Technique to Study the Effect of Strain Rate on the Deformation Behaviour of TRIP Aided Steels with Different Matrix Microstructures. ISIJ International, 2006, 46, 1241-1250.	1.4	13
46	Warm Formability of Ultra High-Strength Low Alloy TRIP-aided Sheet Steels with Bainitic Ferrite Matrix. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 278-284.	0.4	10
47	Development of TRIP-aided Cold Rolled Steel Sheets with the Excellent Stretch-flange Formability. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 581-587.	0.4	1
48	Ductility of 0.1-0.6C-1.5Si-1.5Mn Ultra High-strength TRIP-aided Sheet Steels with Bainitic Ferrite Matrix. ISIJ International, 2004, 44, 1608-1614.	1.4	81
49	Effects of Prestraining on High-Cycle Fatigue Strength of High-Strength Low Alloy TRIP-Aided Steels. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 223-229.	0.2	7
50	The Effects of Heat-treatment Conditions on Stretch-flangeability and Bendability of High-strength Low Alloy TRIP-aided Sheet Steels with Annealed Martensitic Matrix. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 1065-1070.	0.4	12
51	Grain Refinement of High Strength Low Alloy TRIP-aided Ferrous Steels by Thermomechanical Processing in α+γ Region. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 1233-1239.	0.4	5
52	Effect of Initial Microstructures before Annealing on Ductility of TRIP-Aided Steel Sheets. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 609-615.	0.4	3
53	Ductility and Formability of Newly Developed High Strength Low Alloy TRIP-aided Sheet Steels with Annealed Martensite Matrix ISIJ International, 2002, 42, 910-915.	1.4	107
54	Retained Austenite Characteristics and Stretch-flangeability of High-strength Low-alloy TRIP Type Bainitic Sheet Steels ISIJ International, 2002, 42, 450-455.	1.4	84

#	Article	IF	Citations
55	Effect of Morphology of Retained Austenite on Strength and Ductility of TRIP-aided Steel Sheets. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 400-405.	0.4	10
56	Fatigue. Effects of Prestraining on High Cycle Fatigue Strength of High Strength Low Alloy TRIP Steels Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 1091-1097.	0.2	5
57	Effects of Prestraining on Low Cycle Fatigue Properties of Low Alloy TRIP Steels Zairyo/Journal of the Society of Materials Science, Japan, 2001, 50, 657-664.	0.2	12
58	Effect of Carbon Content on Deep Drawability of TRIP-aided Dual-phase Sheet Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2001, 87, 607-612.	0.4	8
59	Stretch-flangeability of a High-strength TRIP Type Bainitic Sheet Steel ISIJ International, 2000, 40, 920-926.	1.4	137
60	Impact Properties of Low Alloy TRIP Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 563-569.	0.4	26
61	Distortion in Service of a 1.2C-1Si-17Cr-2.5Mo-0.8V Tool Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 761-768.	0.4	2
62	1013 Influence of Prestrain on Fatigue Strength Properties of Low Alloy TRIP-aided Steels. The Proceedings of Conference of Hokuriku-Shinetsu Branch, 2000, 2000.37, 407-408.	0.0	0
63	Fatigue-hardening Behavior of TRIP-aided Bainitic Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 856-862.	0.4	14
64	Effects of Warm Forming on Deep Drawability of a TRIP-aided Dual-phase Sheet Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 552-557.	0.4	8
65	Effects of Structure and Stability of Retained Austenite on Deep Drawability of TRIP-aided Dual-phase Sheet Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1999, 85, 885-890.	0.4	2
66	Effects of Second Phase Morphology on Warm Stretch-flangeability of TRIP-aided Dual-phase Sheet Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1998, 84, 218-223.	0.4	10
67	Fatigue Strength of TRIP-aided Bainitic Sheet Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1998, 84, 559-565.	0.4	11
68	Effects of Warm Forming on Stretch-flangeability of a TRIP-aided Dual-phase Sheet Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1997, 83, 335-340.	0.4	28
69	Influence of Deformation Temperature on the Bauschinger Effect of a TRIP-Aided Dual-Phase Steel. Materials Transactions, JIM, 1995, 36, 632-638.	0.9	14
70	Warm Stretch-formability of TRIP-aided Dual-phase Sheet Steels ISIJ International, 1995, 35, 1407-1414.	1.4	85
71	Effects of Volume Fraction and Stability of Retained Austenite on Ductility of TRIP-aided Dual-phase Steels ISIJ International, 1992, 32, 1311-1318.	1.4	375
72	Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 3085-3091.	1.4	361