Verónica de Zea Bermudez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6021580/publications.pdf

Version: 2024-02-01

216 papers 7,905 citations

39 h-index 82 g-index

238 all docs

238 docs citations

238 times ranked

5965 citing authors

#	Article	IF	CITATIONS
1	Solar spectral management with electrochromic devices including PMMA films doped with biluminescent ionosilicas. Journal of Sol-Gel Science and Technology, 2022, 101, 58-70.	2.4	4
2	Luminescent Poly(vinylidene fluoride)â€Based Inks for Anticounterfeiting Applications. Advanced Photonics Research, 2022, 3, 2100151.	3.6	3
3	Biomimetic Silk Macroporous Materials for Drug Delivery Obtained via Ice-Templating. ACS Applied Bio Materials, 2022, 5, 2556-2566.	4.6	6
4	Enhanced ionic conductivity in poly(vinylidene fluoride) electrospun separator membranes blended with different ionic liquids for lithium ion batteries. Journal of Colloid and Interface Science, 2021, 582, 376-386.	9.4	63
5	Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021, 2, 3790-3805.	5.4	27
6	Sol-gel materials for smart electrochromic devices. , 2021, , 439-475.		3
7	The Surfaces of the <i>Ceratonia siliqua</i> L. (Carob) Leaflet: Insights from Physics and Chemistry. Langmuir, 2021, 37, 2011-2028.	3.5	6
8	Gellanâ€Gum and LiTFSlâ€Based Solid Polymer Electrolytes for Electrochromic Devices. ChemistrySelect, 2021, 6, 5110-5119.	1.5	8
9	High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48889-48900.	8.0	21
10	Bioinspired <i>In Vitro</i> Brain Vasculature Model for Nanomedicine Testing Based on Decellularized Spinach Leaves. Nano Letters, 2021, 21, 9853-9861.	9.1	6
11	Proton conducting electrolytes composed of chondroitin sulfate polysaccharide and citric acid. European Polymer Journal, 2020, 124, 109453.	5.4	7
12	Nonâ€Newtonian Nanofluids: Nonâ€Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids (Small 28/2020). Small, 2020, 16, 2070156.	10.0	3
13	Development of Poly(l-Lactic Acid)-Based Bending Actuators. Polymers, 2020, 12, 1187.	4.5	7
14	Plasma-treated Bombyx mori cocoon separators for high-performance and sustainable lithium-ion batteries. Materials Today Sustainability, 2020, 9, 100041.	4.1	9
15	Nonâ€Newtonian Thermosensitive Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids. Small, 2020, 16, e1907661.	10.0	13
16	Highly Conducting Bombyx mori Silk Fibroin-Based Electrolytes Incorporating Glycerol, Dimethyl Sulfoxide and [Bmim]PF ₆ . Journal of the Electrochemical Society, 2020, 167, 070551.	2.9	10
17	Electrochromic Device Composed of a Di-Urethanesil Electrolyte Incorporating Lithium Triflate and 1-Butyl-3-Methylimidazolium Chloride. Frontiers in Materials, 2020, 7, .	2.4	8
18	Di-urea cross-linked siloxane hybrid materials incorporating oligo(oxypropylene) and oligo(oxyethylene) chains. Journal of Sol-Gel Science and Technology, 2020, 95, 620-634.	2.4	2

#	Article	IF	Citations
19	Nanofluid Based on Carbon Dots Functionalized with Ionic Liquids for Energy Applications. Energies, 2020, 13, 649.	3.1	5
20	Solar spectral conversion based on plastic films of lanthanide-doped ionosilicas for photovoltaics: Down-shifting layers and luminescent solar concentrators. Journal of Rare Earths, 2020, 38, 531-538.	4.8	35
21	Structuring of di-alkyl-urethanesils. Journal of Sol-Gel Science and Technology, 2019, 89, 205-215.	2.4	2
22	Magnetic ionic liquid/polymer composites: Tailoring physico-chemical properties by ionic liquid content and solvent evaporation temperature. Composites Part B: Engineering, 2019, 178, 107516.	12.0	20
23	Silk Fibroin Dissolution in Tetrabutylammonium Hydroxide Aqueous Solution. Biomacromolecules, 2019, 20, 4107-4116.	5.4	18
24	Nanofluid Based on Glucoseâ€Derived Carbon Dots Functionalized with [Bmim]Cl for the Next Generation of Smart Windows. Advanced Sustainable Systems, 2019, 3, 1900047.	5. 3	11
25	Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type. Polymer, 2019, 171, 58-69.	3.8	17
26	lonic Liquid Cation Size-Dependent Electromechanical Response of Ionic Liquid/Poly(vinylidene) Tj ETQq0 0 0 rgBT	「 Oyerlock	≀ 10 Tf 50 46
27	Luminescent κ-Carrageenan-Based Electrolytes Containing Neodymium Triflate. Molecules, 2019, 24, 1020.	3.8	9
28	Sustainable Dual-Mode Smart Windows for Energy-Efficient Buildings. ACS Applied Energy Materials, 2019, 2, 1951-1960.	5.1	27
29	Advanced hybrid nanomaterials. Beilstein Journal of Nanotechnology, 2019, 10, 2563-2567.	2.8	9
30	Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochimica Acta, 2019, 296, 598-607.	5.2	49
31	Threeâ€Mode Modulation Electrochromic Device with High Energy Efficiency for Windows of Buildings Located in Continental Climatic Regions. Advanced Sustainable Systems, 2019, 3, 1800115.	5.3	22
32	Transparent Luminescent Solar Concentrators Using Ln3+-Based Ionosilicas Towards Photovoltaic Windows. Energies, 2019, 12, 451.	3.1	37
33	lonic and conformational mobility in poly(vinylidene fluoride)/ionic liquid blends: Dielectric and electrical conductivity behavior. Polymer, 2018, 143, 164-172.	3.8	32
34	Silk Fibroin Separators: A Step Toward Lithium-Ion Batteries with Enhanced Sustainability. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5385-5394.	8.0	50
35	Structuring of Amide Cross‣inked Nonâ€Bridged and Bridged Alkylâ€Based Silsesquioxanes. Chemical Record, 2018, 18, 724-736.	5.8	5
36	Samarium (III) triflate-doped chitosan electrolyte for solid state electrochromic devices. Electrochimica Acta, 2018, 267, 51-62.	5.2	24

#	Article	IF	CITATIONS
37	Luminescent Electrochromic Devices for Smart Windows of Energy-Efficient Buildings. Energies, 2018, 11, 3513.	3.1	16
38	<i>Bombyx mori</i> Silkworm Cocoon Separators for Lithiumâ€lon Batteries with Superior Safety and Sustainability. Advanced Sustainable Systems, 2018, 2, 1800098.	5.3	15
39	lonic Liquid-Assisted Synthesis of Mesoporous Silk Fibroin/Silica Hybrids for Biomedical Applications. ACS Omega, 2018, 3, 10811-10822.	3.5	23
40	<i>Bombyx mori</i> silk/titania/gold hybrid materials for photocatalytic water splitting: combining renewable raw materials with clean fuels. Beilstein Journal of Nanotechnology, 2018, 9, 187-204.	2.8	3
41	Preparation of Well-Dispersed Chitosan/Alginate Hollow Multilayered Microcapsules for Enhanced Cellular Internalization. Molecules, 2018, 23, 625.	3.8	31
42	Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta, 2017, 232, 484-494.	5.2	11
43	Structuring of Alkylâ€Triazole Bridged Silsesquioxanes. ChemistrySelect, 2017, 2, 432-442.	1.5	20
44	High-Performance Near-Infrared Luminescent Solar Concentrators. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12540-12546.	8.0	64
45	Ecoâ€Friendly Red Seaweedâ€Derived Electrolytes for Electrochemical Devices. Advanced Sustainable Systems, 2017, 1, 1700070.	5.3	20
46	d-Poly(e-caprolactone) (530)/siloxane biohybrid films doped with protic ionic liquids. Journal of Electroanalytical Chemistry, 2017, 799, 249-256.	3.8	4
47	Hybrid nanomaterials: from the laboratory to the market. Beilstein Journal of Nanotechnology, 2017, 8, 861-862.	2.8	1
48	Novel Highly Luminescent Amine-Functionalized Bridged Silsesquioxanes. Frontiers in Chemistry, 2017, 5, 131.	3.6	7
49	Diâ€ureasil Hybrid Electrolytes Incorporating a New Proton Ionic Liquid. ChemElectroChem, 2016, 3, 783-789.	3.4	5
50	Smart Windows Prepared from <i>Bombyx mori</i> Silk. ChemElectroChem, 2016, 3, 1084-1097.	3.4	18
51	Ion conducting and paramagnetic d-PCL(530)/siloxane-based biohybrids doped with Mn2+ ions. Electrochimica Acta, 2016, 211, 804-813.	5. 2	5
52	Fabrication and optical properties of thin films with sol–gel derived di-ureasils doped with Disperse Red 1. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
53	<i>Bombyx mori</i> Silk Fibers: An Outstanding Family of Materials. Macromolecular Materials and Engineering, 2015, 300, 1171-1198.	3.6	89
54	Di-amidosils with tunable structure, morphology and emission quantum yield: the role of hydrogen bonding. Journal of Materials Chemistry C, 2015, 3, 6844-6861.	5.5	25

#	Article	IF	CITATIONS
55	Electrochromic devices incorporating biohybrid electrolytes doped with a lithium salt, an ionic liquid or a mixture of both. Electrochimica Acta, 2015, 161, 226-235.	5.2	29
56	Polymer electrolyte based on DNA and N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide. Journal of Electroanalytical Chemistry, 2015, 748, 70-75.	3.8	11
57	Gellan gumâ€"lonic liquid membranes for electrochromic device application. Solid State Ionics, 2015, 274, 64-70.	2.7	26
58	Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties. Electrochimica Acta, 2015, 184, 171-178.	5.2	16
59	Nanostructuring of Bridged Organosilane Precursors with Pendant Alkyl Chains. European Journal of Inorganic Chemistry, 2015, 2015, 1218-1225.	2.0	22
60	Fabrication of low-cost thermo-optic variable wave plate based on waveguides patterned on di-ureasil hybrids. Optics Express, 2014, 22, 27159.	3.4	16
61	Investigation of calcium carbonate precipitated in the presence of alkanols. Crystal Research and Technology, 2014, 49, 418-430.	1.3	1
62	Di-urethanesil hybrid electrolytes doped with Mg(CF3SO3)2. lonics, 2014, 20, 29-36.	2.4	1
63	Luminescent solar concentrators: challenges for lanthanide-based organic–inorganic hybrid materials. Journal of Materials Chemistry A, 2014, 2, 5580-5596.	10.3	150
64	Fractality and metastability of a complex amide cross-linked dipodal alkyl/siloxane hybrid. RSC Advances, 2014, 4, 59664-59675.	3.6	18
65	Chitosan and Ionic Liquid Based Solid Polymer Electrolytes: The Anion Alkyl Chain Length Effect. ECS Transactions, 2014, 61, 51-59.	0.5	6
66	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	2.6	5
67	Quasi-anhydrous proton conducting di-ureasil hybrid electrolytes incorporating a protic ionic liquid. Electrochimica Acta, 2014, 147, 288-293.	5.2	6
68	Lamellar mono-amidosil hybrids doped with Rhodamine (B) methyl ester perchlorate. Journal of Sol-Gel Science and Technology, 2014, 72, 239-251.	2.4	17
69	Polarization state control using thermo-optic effect in organic-inorganic hybrids waveguides. , 2014, ,		1
70	Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium Â-diketonate Complex. ECS Transactions, 2014, 61, 213-225.	0.5	5
71	Ionically conducting Er3+-doped DNA-based biomembranes for electrochromic devices. Electrochimica Acta, 2014, 120, 327-333.	5.2	19
72	Green Li+- and Er3+-doped poly(ε-caprolactone)/siloxane biohybrid electrolytes for smart electrochromic windows. Solar Energy Materials and Solar Cells, 2014, 123, 203-210.	6.2	18

#	Article	IF	Citations
73	Luminescent DNA- and Agar-Based Membranes. Journal of Nanoscience and Nanotechnology, 2014, 14, 6685-6691.	0.9	10
74	Luminescent Electrochromic Device Based on a Biohybrid Electrolyte Doped with a Mixture of Potassium Triflate and a Europium \hat{l}^2 -diketonate Complex. ECS Meeting Abstracts, 2014, , .	0.0	0
75	Chitosan and Ionic Liquid Based Solid Polymer Electrolytes: The Anion Alkyl Chain Length Effect. ECS Meeting Abstracts, 2014, , .	0.0	O
76	Photoluminescent lamellar bilayer mono-alkyl-urethanesils. Journal of Sol-Gel Science and Technology, 2013, 65, 61-73.	2.4	28
77	Vibrational analysis of d-PCL(530)/siloxane-based hybrid electrolytes doped with two lithium salts. lonics, 2013, 19, 1803-1809.	2.4	7
78	Lamellar Salt-Doped Hybrids with Two Reversible Order/Disorder Phase Transitions. Journal of Physical Chemistry B, 2013, 117, 14529-14543.	2.6	5
79	Role of the reactive atmosphere during the sol–gel synthesis on the enhancing of the emission quantum yield of urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 70, 227.	2.4	1
80	Structural characterization of solid trivalent metal dodecyl sulfates: from aqueous solution to lamellar superstructures. RSC Advances, 2013, 3, 1420-1433.	3.6	22
81	Electro-optical properties of the DNA-Eu3+ bio-membranes. Journal of Electroanalytical Chemistry, 2013, 708, 116-123.	3.8	15
82	Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 173-183.	3.1	98
83	Lamellar mono-amidosil hybrids incorporating monomethinecyanine dyes. Journal of Materials Chemistry C, 2013, 1, 2290.	5.5	23
84	Gelatin _{<i>n</i>} Zn(CF ₃ SO ₃) ₂ Polymer Electrolytes for Electrochromic Devices. Electroanalysis, 2013, 25, 1483-1490.	2.9	22
85	Luminescent urea cross-linked tripodal siloxane-based hybrids. Journal of Sol-Gel Science and Technology, 2013, 65, 83-92.	2.4	21
86	Boosting the Emission Quantum Yield of Urea Cross-Linked Tripodal Poly(oxypropylene)/Siloxane Hybrids Through the Variation of Catalyst Concentration. European Journal of Inorganic Chemistry, 2012, 2012, 5390-5395.	2.0	32
87	Water-mediated structural tunability of an alkyl/siloxane hybrid: from amorphous material to lamellar structure or bilamellar superstructure. RSC Advances, 2012, 2, 2087.	3.6	35
88	Structural studies of novel di-ureasil ormolytes doped with lithium hexafluoroantimonate. Solid State Ionics, 2012, 226, 7-14.	2.7	4
89	lonic-Liquid-Assisted Morphology Tuning of Calcium Carbonate in Ethanolic Solution. European Journal of Inorganic Chemistry, 2012, 2012, 2183-2192.	2.0	13
90	Europium complex-based thermochromic sensor for integration in plastic optical fibres. Optical Materials, 2012, 34, 1447-1450.	3.6	10

#	Article	IF	CITATIONS
91	Solvent-controlled morphology of lamellar silsesquioxanes: from platelets to microsponges. CrystEngComm, 2011, 13, 1410-1415.	2.6	34
92	Li $<$ sup $>+<$ /sup $>-$ and Eu $<$ sup $>3+<$ /sup $>-$ Doped Poly($\hat{l}\mu$ -caprolactone)/Siloxane Biohybrid Electrolytes for Electrochromic Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2953-2965.	8.0	24
93	Self-Structuring of Lamellar Bridged Silsesquioxanes with Long Side Spacers. Journal of Physical Chemistry B, 2011, 115, 10877-10891.	2.6	36
94	Progress on lanthanide-based organic–inorganic hybrid phosphors. Chemical Society Reviews, 2011, 40, 536-549.	38.1	527
95	K+-doped poly($\hat{l}\mu$ -caprolactone)/siloxane biohybrid electrolytes for electrochromic devices. Solid State lonics, 2011, 204-205, 129-139.	2.7	18
96	Di-ureasil hybrids doped with LiBF4: Spectroscopic study of the ionic interactions and hydrogen bonding. Materials Chemistry and Physics, 2011, 129, 385-393.	4.0	7
97	FT-IR and FT-Raman spectroscopy study of di-urethanesil hybrids doped with Mg(CF3SO3)2. Vibrational Spectroscopy, 2011, 57, 187-195.	2.2	6
98	Structure, thermal properties, conductivity and electrochemical stability of di-urethanesil hybrids doped with LiCF3SO3. Ionics, 2010, 16, 193-201.	2.4	13
99	Eu ^{III} â€Doping of Lamellar Bilayer and Amorphous Monoâ€Amide Crossâ€Linked Alkyl/Siloxane Hybrids. European Journal of Inorganic Chemistry, 2010, 2010, 2688-2699.	2.0	8
100	Enhanced photoluminescence features of Eu3+-modified di-ureasil-zirconium oxocluster organic–inorganic hybrids. Optical Materials, 2010, 32, 1587-1591.	3.6	8
101	Mg2+-doped poly(É>-caprolactone)/siloxane biohybrids. Electrochimica Acta, 2010, 55, 1328-1332.	5.2	17
102	Trimethyl 2,2′,2′′-[1,3,5-triazine-2,4,6-triyltris(azanediyl)]triacetate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3243-o3244.	0.2	1
103	Lithium-doped hybrid polymer electrolytes. , 2010, , 176-218.		4
104	Eu3+-Assisted Short-Range Ordering of Photoluminescent Bridged Silsesquioxanes. Chemistry of Materials, 2010, 22, 3599-3609.	6.7	36
105	Low-cost optical components based on organic-inorganic hybrids produced using direct UV writing technique. , 2010, , .		0
106	Lanthanide-Containing 2,2′-Bipyridine Bridged Urea Cross-Linked Polysilsesquioxanes. Spectroscopy Letters, 2010, 43, 321-332.	1.0	7
107	Lanthanide ontaining Lightâ€Emitting Organic–Inorganic Hybrids: A Bet on the Future. Advanced Materials, 2009, 21, 509-534.	21.0	850
108	Highly luminescent di-ureasil hybrid doped with a Eu(III) complex including dipicolinate ligands. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 205, 156-160.	3.9	19

#	Article	IF	Citations
109	Di-ureasil xerogels containing lithium bis(trifluoromethanesulfonyl)imide for application in solid-state electrochromic devices. Electrochimica Acta, 2009, 54, 1002-1009.	5.2	41
110	Ligand-Assisted Rational Design and Supramolecular Tectonics toward Highly Luminescent Eu ³⁺ -Containing Organicâ Inorganic Hybrids. Chemistry of Materials, 2009, 21, 5099-5111.	6.7	58
111	Dual role of a di-urethanesil hybrid doped with europium \hat{l}^2 -diketonate complexes containing either waterligands or a bulky chelating ligand. Journal of Materials Chemistry, 2009, 19, 733-742.	6.7	35
112	Glycine methyl ester hydrochloride. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1970-o1970.	0.2	5
113	Methyl 2-(4,6-dichloro-1,3,5-triazin-2-ylamino)acetate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1985-o1986.	0.2	2
114	Incorporation of the Eu(tta)3(H2O)2 complex into a co-condensed d-U(600)/d-U(900) matrix. Journal of Luminescence, 2008, 128, 205-212.	3.1	24
115	Cationic and anionic environments in LiTFSI-doped di-ureasils with application in solid-state electrochromic devices. Chemical Physics, 2008, 345, 32-40.	1.9	14
116	Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis. Optical Materials, 2008, 30, 1058-1064.	3.6	32
117	Cation coordination and hydrogen bonding in potassium and magnesium based-di-amidosil hybrids. Journal of Molecular Structure, 2008, 874, 128-137.	3.6	0
118	Vibrational spectra and microstructure of poly($\hat{l}\mu$ -caprolactone)/siloxane biohybrids doped with lithium triflate. Journal of Molecular Structure, 2008, 879, 72-80.	3.6	13
119	Dye-sensitized solar cells: A safe bet for the future Energy and Environmental Science, 2008, 1, 655.	30.8	373
120	Photoluminescence of Eu(iii)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. Journal of Materials Chemistry, 2008, 18, 4172.	6.7	61
121	Structure and photoluminescence of di-amidosil nanohybrids incorporating europium triflate. Journal of Alloys and Compounds, 2008, 451, 510-515.	5.5	8
122	Optical material composed of a di-urethanesil host hybrid and a europium complex. Journal of Alloys and Compounds, 2008, 451, 201-205.	5 . 5	9
123	Photopatternable Di-ureasilâ^'Zirconium Oxocluster Organicâ^'Inorganic Hybrids As Cost Effective Integrated Optical Substrates. Chemistry of Materials, 2008, 20, 3696-3705.	6.7	44
124	Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions. Physical Review B, 2008, 77, .	3.2	23
125	Sol–gel-derived potassium-based di-ureasils for "smart windows― Journal of Materials Chemistry, 2007, 17, 4239.	6.7	33
126	Energy Transfer and Emission Quantum Yields of Organicâ^'Inorganic Hybrids Lacking Metal Activator Centers. Journal of Physical Chemistry C, 2007, 111, 3275-3284.	3.1	70

#	Article	IF	CITATIONS
127	Nanoscopic Photoluminescence Memory as a Fingerprint of Complexity in Self-Assembled Alkyl/Siloxane Hybrids. Advanced Materials, 2007, 19, 341-348.	21.0	101
128	Spectroscopic and structural studies of di-ureasils doped with lithium perchlorate. Electrochimica Acta, 2007, 53, 1466-1475.	5.2	27
129	Highly Photostable Luminescent Poly(Îμ-caprolactone)siloxane Biohybrids Doped with Europium Complexes. Chemistry of Materials, 2007, 19, 3892-3901.	6.7	164
130	Role of energy transfer and charge trapping on the luminescence properties of Europium complexes/luminescent polymers composites. Journal of Materials Science: Materials in Electronics, 2007, 18, 271-275.	2.2	2
131	Local and nanoscopic structure of potassium triflate-doped siloxane–polyoxyethylene ormolytes. Journal of Non-Crystalline Solids, 2006, 352, 3457-3462.	3.1	7
132	Structure and properties of Ti4+-ureasil organic-inorganic hybrids. Journal of the Brazilian Chemical Society, 2006, 17, 443-452.	0.6	19
133	Sol–gel preparation of a di-ureasil electrolyte doped with lithium perchlorate. Electrochimica Acta, 2006, 52, 1542-1548.	5.2	32
134	FT-IR and Raman spectroscopic study of di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with Zn2+ ions. Vibrational Spectroscopy, 2006, 40, 278-288.	2.2	10
135	Nanostructure and luminescent properties of sol-gel derived europium-doped amine functionalised hybrids. Journal of Sol-Gel Science and Technology, 2006, 37, 99-104.	2.4	5
136	Sol-gel derived Li+-doped poly ($\hat{l}\mu$ -caprolactone)/siloxane biohybrid electrolytes. Journal of Solid State Electrochemistry, 2006, 10, 203-210.	2.5	29
137	Study of sol–gel derived di-ureasils doped with zinc triflate. Solid State Sciences, 2006, 8, 1484-1491.	3.2	14
138	Iron Oxide and Oxide-Hydroxide Nanoparticles in Organic-Inorganic Matrices. Materials Science Forum, 2006, 514-516, 142-146.	0.3	0
139	Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices. Journal of Applied Physics, 2006, 100, 054301.	2.5	19
140	Magnetic behavior of iron (III) oxyhydroxy nanoparticles in organic–inorganic hybrid matrices. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 962-965.	2.3	2
141	Di-ureasil ormolytes doped with Mg2+ ions: Part 2. Cationic and anionic environments. Solid State lonics, 2005, 176, 1601-1611.	2.7	9
142	Di-ureasil ormolytes doped with Mg2+ ionsPart 1: Morphological, thermal and electrochemical properties. Solid State Ionics, 2005, 176, 1591-1599.	2.7	31
143	Eu3+Coordination in an Organic/Inorganic Hybrid Matrix with Methyl End-Capped Short Polyether Chains. Journal of Physical Chemistry B, 2005, 109, 7110-7119.	2.6	15
144	Diurea Cross-Linked Poly(oxyethylene)/Siloxane Ormolytes for Lithium Batteries. Journal of the Electrochemical Society, 2005, 152, A429.	2.9	39

#	Article	IF	CITATIONS
145	Planar and UV written channel optical waveguides prepared with siloxane–poly(oxyethylene)–zirconia organic–inorganic hybrids. Structure and optical properties. Journal of Materials Chemistry, 2005, 15, 3937.	6.7	52
146	Structure and photoluminescent features of di-amide cross-linked alkylene–siloxane hybrids. Journal of Materials Chemistry, 2005, 15, 3876.	6.7	42
147	Structure–photoluminescence relationship in Eu(iii) β-diketonate-based organic–inorganic hybrids. Influence of the synthesis method: carboxylic acid solvolysis versus conventional hydrolysis. Journal of Materials Chemistry, 2005, 15, 3117.	6.7	86
148	Matrix assisted formation of ferrihydrite nanoparticles in a siloxane/poly(oxyethylene) nanohybrid. Journal of Materials Chemistry, 2005, 15, 484.	6.7	17
149	Local Structure and Near-Infrared Emission Features of Neodymium-Based Amine Functionalized Organic/Inorganic Hybrids. Journal of Physical Chemistry B, 2005, 109, 20093-20104.	2.6	52
150	Di-Urethane Cross-linked Poly(oxyethylene)/Siloxane Nanohybrids Doped With Eu(CF3SO3)3. Materials Research Society Symposia Proceedings, 2004, 847, 128.	0.1	2
151	Nanosized Photonics and Magnetism in Organic-Inorganic Hybrids. Materials Science Forum, 2004, 455-456, 564-568.	0.3	1
152	Er3+-doped Polyether/siloxane Hybrid Materials for Optoelectronics. Materials Research Society Symposia Proceedings, 2004, 847, 198.	0.1	0
153	Photoluminescence-structure relationships in ormosils for integrated optical devices. Materials Research Society Symposia Proceedings, 2004, 847, 79.	0.1	1
154	Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ions: Part 1. Coordinating ability of the host matrix. Physical Chemistry Chemical Physics, 2004, 6, 638-648.	2.8	24
155	White-Light Emission of Amine-Functionalized Organic/Inorganic Hybrids:  Emitting Centers and Recombination Mechanisms. Journal of Physical Chemistry B, 2004, 108, 14924-14932.	2.6	234
156	Optically Functional Di-Urethanesil Nanohybrids Containing Eu3+ Ions. Chemistry of Materials, 2004, 16, 2530-2543.	6.7	140
157	Photoluminescence and Quantum Yields of Urea and Urethane Cross-Linked Nanohybrids Derived from Carboxylic Acid Solvolysis. Chemistry of Materials, 2004, 16, 1507-1516.	6.7	100
158	Ferrihydrite antiferromagnetic nanoparticles in a sol–gel derived organic–inorganic matrix. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 1549-1550.	2.3	19
159	lonic environment and hydrogen bonding in di-ureasil ormolytes doped with lithium triflate. Journal of Molecular Structure, 2004, 702, 39-48.	3.6	30
160	Cationic and anionic environments in mono-urethanesil hybrids doped with magnesium triflate. Solid State Ionics, 2004, 166, 103-114.	2.7	8
161	Urethane cross-linked poly(oxyethylene)/siliceous nanohybrids doped with Eu3+ions: Part 2. Ionic association. Physical Chemistry Chemical Physics, 2004, 6, 649-658.	2.8	29
162	Local coordination of Eu(III) in organic/inorganic amine functionalized hybrids. Journal of Alloys and Compounds, 2004, 374, 50-55.	5.5	12

#	Article	IF	Citations
163	Eu3+ doped polyphosphate–aminosilane organic–inorganic hybrids. Journal of Alloys and Compounds, 2004, 374, 74-78.	5.5	7
164	Effect of presence of an acid catalyst on structure and properties of iron-doped siloxane-polyoxyethylene nanocomposites prepared by sol–gel. Journal of Non-Crystalline Solids, 2004, 345-346, 585-590.	3.1	11
165	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 375-381.	2.4	9
166	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 315-319.	2.4	20
167	Structure of luminescent mono and di-urethanesil nanocomposites doped with Eu3+ ions. Nuclear Instruments & Methods in Physics Research B, 2003, 199, 117-122.	1.4	4
168	Enhanced emission from Eu(III) β-diketone complex combined with ether-type oxygen atoms of di-ureasil organic–inorganic hybrids. Journal of Luminescence, 2003, 104, 93-101.	3.1	65
169	Sol–gel-derived POE/siliceous hybrids doped with Na+ ions: morphology and ionic conductivity. Solid State Ionics, 2003, 156, 85-93.	2.7	14
170	Small-angle X-ray scattering and X-ray absorption near-edge structure study of iron-doped siloxane-polyoxyethylene nanocomposites. Journal of Applied Crystallography, 2003, 36, 405-409.	4.5	10
171	Structure of magnetic poly(oxyethylene)–siloxane nanohybrids doped with Felland Felll. Journal of Applied Crystallography, 2003, 36, 961-966.	4.5	10
172	Cation coordination in mono-urethanesil hybrids doped with sodium triflate. Electrochimica Acta, 2003, 48, 1977-1989.	5.2	13
173	Magnetic properties of Fe-doped organic–inorganic nanohybrids. Journal of Applied Physics, 2003, 93, 6978-6980.	2.5	17
174	Magnetic Sol-Gel Derived Poly(oxyethylene)- Siloxane Nanohybrids. Materials Research Society Symposia Proceedings, 2002, 726, 1.	0.1	1
175	Small-Angle X-ray Scattering Study of Gelation and Aging of Eu3+-Doped Solâ^'Gel-Derived Siloxaneâ^'Poly(oxyethylene) Nanocomposites. Journal of Physical Chemistry B, 2002, 106, 4377-4382.	2.6	19
176	Fine-Tuning of the Chromaticity of the Emission Color of Organic–Inorganic Hybrids Co-Doped with Eulli, TbIII, and TmIII. Advanced Functional Materials, 2002, 12, 819-823.	14.9	142
177	Infrared and Raman spectroscopic investigation of Eu3+-doped mono and Di-urethanesil hybrid siliceous materials. Ionics, 2002, 8, 62-72.	2.4	19
178	An investigation of the morphological, electrical and optoelectronic properties of short chain Di-ureasils doped with Er3+ ions. Ionics, 2002, 8, 73-78.	2.4	11
179	Ion solvation and hydrogen bonding in Eu3+-doped mono-urethanesil hybrids carrying pendant short polyether chains. Journal of Molecular Structure, 2002, 611, 83-93.	3.6	11
180	Morphological and conductivity studies of di-ureasil xerogels containing lithium triflate. Electrochimica Acta, 2002, 47, 2421-2428.	5.2	28

#	Article	IF	Citations
181	Short chain U(600) di-urea cross-linked poly(oxyethylene)/siloxane ormolytes doped with lanthanum triflate salt. Electrochimica Acta, 2002, 47, 2551-2555.	5.2	7
182	Structural modelling of Eu3+-based siloxane–poly(oxyethylene) nanohybrids. Journal of Materials Chemistry, 2001, 11, 3249-3257.	6.7	50
183	Coordination of Eu3+lons in Siliceous Nanohybrids Containing Short Polyether Chains and Bridging Urea Cross-links. Journal of Physical Chemistry B, 2001, 105, 3378-3386.	2.6	83
184	Full-Color Phosphors from Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions. Advanced Functional Materials, 2001, 11, 111-115.	14.9	148
185	Energy-Transfer Mechanisms and Emission Quantum Yields In Eu3+-Based Siloxane-Poly(oxyethylene) Nanohybrids. Chemistry of Materials, 2001, 13, 2991-2998.	6.7	178
186	Magnetic probing of tunable Eu/sup 3+/ local site in organic-inorganic nanohybrids. IEEE Transactions on Magnetics, 2001, 37, 2935-2937.	2.1	15
187	Full-Color Phosphors from Amine-Functionalized Crosslinked Hybrids Lacking Metal Activator Ions. Advanced Functional Materials, 2001, 11, 111-115.	14.9	3
188	Coordenação local do Eu(III) em hÃbridos orgânicos/inorgânicos emissores de luz branca. Quimica Nova, 2001, 24, .	0.3	1
189	Full-Color Phosphors from Europium(III)-Based Organosilicates. Advanced Materials, 2000, 12, 594-598.	21.0	313
190	Thermal properties and ionic conductivities of lanthanide-based ormolytes. Electrochimica Acta, 2000, 45, 1467-1471.	5.2	32
191	An intra-Nd3+ visible to infrared conversion process in hybrid xerogels. Electrochimica Acta, 2000, 45, 1555-1560.	5.2	23
192	Sol–gel derived nanocomposite hybrids for full colour displays. Journal of Luminescence, 2000, 87-89, 702-705.	3.1	39
193	An interesting ligand for the preparation of luminescent plastics: The picrate ion. Journal of Chemical Physics, 2000, 112, 3293-3313.	3.0	38
194	Full-Color Phosphors from Europium(III)-Based Organosilicates. Advanced Materials, 2000, 12, 594-598.	21.0	3
195	White light emission of Eu3+-based hybrid xerogels. Physical Review B, 1999, 60, 10042-10053.	3.2	117
196	Synthesis and characterization of novel urethane cross-linked ormolytes for solid-state lithium batteries. Solid State Ionics, 1999, 116, 197-209.	2.7	68
197	Solâ^'Gel Derived Urea Cross-Linked Organically Modified Silicates. 2. Blue-Light Emission. Chemistry of Materials, 1999, 11, 581-588.	6.7	254
198	Coordination of Eu3+ in mono-urethane cross-linked hybrid xerogels. Ionics, 1999, 5, 251-260.	2.4	8

#	Article	IF	CITATIONS
199	The fuel-cell car at last?. Ionics, 1999, 5, 122-128.	2.4	0
200	Excitation energy dependence of luminescent sol-gel organically modified silicates. Thin Solid Films, 1999, 343-344, 476-480.	1.8	14
201	Solâ^'Gel Derived Urea Cross-Linked Organically Modified Silicates. 1. Room Temperature Mid-Infrared Spectra. Chemistry of Materials, 1999, 11, 569-580.	6.7	202
202	Sol-gel processing and structural study of europium-doped hybrid materials. Journal of Materials Chemistry, 1999, 9, 1735-1740.	6.7	61
203	Multi-wavelength europium-based hybrid phosphors. Journal of Non-Crystalline Solids, 1999, 247, 203-208.	3.1	43
204	Neodymium doped, sol-gel processed polymer electrolytes. Ionics, 1998, 4, 170-174.	2.4	5
205	A novel class of luminescent polymers obtained by the sol–gel approach. Journal of Alloys and Compounds, 1998, 275-277, 21-26.	5.5	85
206	How To Learn and Have Fun with Poly(Vinyl Alcohol) and White Glue. Journal of Chemical Education, 1998, 75, 1410.	2.3	21
207	Chemistry and physical properties of sulfamide and its derivatives: proton conducting materials. Journal of Materials Chemistry, 1997, 7, 1677-1692.	6.7	54
208	Sulfamide complexes of polymethacrylates carrying oligopolyoxyethylene chains. Solid State Ionics, 1993, 61, 203-212.	2.7	7
209	Infrared and Raman characterization of polyethylene oxide complexes of sulfamide. Solid State Ionics, 1993, 61, 219-225.	2.7	5
210	Vibrational spectra, structure and phase transition in crystalline sulfamide. Journal of Molecular Structure, 1993, 297, 185-206.	3.6	10
211	Infrared and Raman spectroscopic study of polyether solutions of sulphamide Part I: Tetraethyleneglycol dimethyl ether and water. Journal of Molecular Structure, 1993, 301, 7-19.	3.6	11
212	Proton-vacancy-conducting polymers based on anion-grafted ormosils synthesized via sol-gel process. , 1992, , .		6
213	Proton-vacancy conducting polymers based on polyethylene oxide and sulfamide-type salts. Electrochimica Acta, 1992, 37, 1603-1609.	5.2	17
214	Hybrid Materials for Optical Applications. , 0, , 337-400.		0
215	Sustainable lithiumâ€ion battery separators based on poly(3â€hydroxybutyrateâ€coâ€hydroxyvalerate) pristine and composite electrospun membranes. Energy Technology, 0, , 2100761.	3.8	4
216	Vicariance Between Cercis siliquastrum L. and Ceratonia siliqua L. Unveiled by the Physical–Chemical Properties of the Leaves' Epicuticular Waxes. Frontiers in Plant Science, 0, 13, .	3.6	3