Xiahui Yao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602125/publications.pdf Version: 2024-02-01

Χιλητη Χνο

#	Article	IF	CITATIONS
1	Synthesizing Functional Ceramic Powders for Solid Oxide Cells in Minutes through Thermal Shock. ACS Energy Letters, 2022, 7, 1223-1229.	17.4	6
2	Chemical and structural origin of hole states in yttria-stabilized zirconia. Acta Materialia, 2021, 203, 116487.	7.9	15
3	Uranium In Situ Electrolytic Deposition with a Reusable Functional Grapheneâ€Foam Electrode. Advanced Materials, 2021, 33, e2102633.	21.0	52
4	Kinetic Rejuvenation of Li-Rich Li-Ion Battery Cathodes upon Oxygen Redox. ACS Applied Energy Materials, 2020, 3, 7931-7943.	5.1	12
5	Protonic solid-state electrochemical synapse for physical neural networks. Nature Communications, 2020, 11, 3134.	12.8	82
6	Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578, 251-255.	27.8	333
7	Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Interfaces, 2019, 11, 5616-5622.	8.0	46
8	Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment. Nature Energy, 2019, 4, 1049-1058.	39.5	248
9	Cathodically Stable Li-O2 Battery Operations Using Water-in-Salt Electrolyte. CheM, 2018, 4, 1345-1358.	11.7	69
10	Photo-Induced Performance Enhancement of Tantalum Nitride for Solar Water Oxidation. Joule, 2017, 1, 831-842.	24.0	46
11	Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Research, 2017, 10, 4318-4326.	10.4	64
12	Warum Lithiumâ€Sauerstoffâ€Batterien versagen: Parasitäe chemische Reaktionen und ihr synergistischer Effekt. Angewandte Chemie, 2016, 128, 11514-11524.	2.0	22
13	Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation. Energy and Environmental Science, 2016, 9, 1794-1802.	30.8	136
14	A rechargeable non-aqueous Mg-Br2 battery. Nano Energy, 2016, 28, 440-446.	16.0	36
15	Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect. Angewandte Chemie - International Edition, 2016, 55, 11344-11353.	13.8	186
16	Enabling rechargeable non-aqueous Mg–O ₂ battery operations with dual redox mediators. Chemical Communications, 2016, 52, 13753-13756.	4.1	22
17	Hematiteâ€Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono―and Multilayers of Iridium Oxygenâ€Evolution Catalysts. Angewandte Chemie - International Edition, 2015, 54, 11428-11432. 	13.8	121
18	Three Dimensionally Ordered Mesoporous Carbon as a Stable, Highâ€Performance Li–O ₂ Battery Cathode. Angewandte Chemie - International Edition, 2015, 54, 4299-4303.	13.8	175

Χιαμμι Υαο

#	Article	IF	CITATIONS
19	Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications, 2015, 6, 7447.	12.8	429
20	Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations. ACS Applied Materials & Interfaces, 2015, 7, 21948-21955.	8.0	34
21	Achieving Low Overpotential Li–O ₂ Battery Operations by Li ₂ O ₂ Decomposition through One-Electron Processes. Nano Letters, 2015, 15, 8371-8376.	9.1	70
22	Selective Deposition of Ru Nanoparticles on TiSi ₂ Nanonet and Its Utilization for Li ₂ O ₂ Formation and Decomposition. Journal of the American Chemical Society, 2014, 136, 8903-8906.	13.7	106
23	Development of a novel type of composite cathode material for proton-conducting solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 5940-5945.	7.1	13