Gary A Jarvis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6021054/publications.pdf

Version: 2024-02-01

33	1,377	20	32
papers	citations	h-index	g-index
33	33 docs citations	33	2115
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Novel small molecules that increase the susceptibility of <i>Neisseria gonorrhoeae</i> to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase. Journal of Antimicrobial Chemotherapy, 2022, 77, 2441-2447.	1.3	4
2	Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. Journal of Lipid Research, 2020, 61, 1437-1449.	2.0	4
3	Cationic cell-penetrating peptide is bactericidal against Neisseria gonorrhoeae. Journal of Antimicrobial Chemotherapy, 2019, 74, 3245-3251.	1.3	12
4	Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. Journal of Lipid Research, 2018, 59, 1893-1905.	2.0	4
5	Treatment of human challenge and MDR strains of Neisseria gonorrhoeae with LpxC inhibitors. Journal of Antimicrobial Chemotherapy, 2018, 73, 2064-2071.	1.3	8
6	Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2218-2223.	3.3	113
7	Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathogens and Disease, 2017, 75, .	0.8	13
8	Analysis of Bacterial Lipooligosaccharides by MALDI-TOF MS with Traveling Wave Ion Mobility. Journal of the American Society for Mass Spectrometry, 2016, 27, 1263-1276.	1.2	15
9	Lipooligosaccharide Structures of Invasive and Carrier Isolates of Neisseria meningitidis Are Correlated with Pathogenicity and Carriage. Journal of Biological Chemistry, 2016, 291, 3224-3238.	1.6	17
10	Induction of Endotoxin Tolerance by Pathogenic <i>Neisseria</i> Is Correlated with the Inflammatory Potential of Lipooligosaccharides and Regulated by MicroRNA-146a. Journal of Immunology, 2014, 192, 1768-1777.	0.4	26
11	Post-injury conditioning with lipopolysaccharide or lipooligosaccharide reduces inflammation in the brain. Journal of Neuroimmunology, 2013, 256, 28-37.	1.1	8
12	Campylobacter jejuni Lipooligosaccharide Sialylation, Phosphorylation, and Amide/Ester Linkage Modifications Fine-tune Human Toll-like Receptor 4 Activation. Journal of Biological Chemistry, 2013, 288, 19661-19672.	1.6	40
13	Lack of Lipid A Pyrophosphorylation and Functional <i>lptA</i> Reduces Inflammation by Neisseria Commensals. Infection and Immunity, 2012, 80, 4014-4026.	1.0	48
14	Secretory Leukocyte Protease Inhibitor Binds to <i><scp>N</scp>eisseria gonorrhoeae</i> Outer Membrane Opacity Protein and is Bactericidal. American Journal of Reproductive Immunology, 2012, 68, 116-127.	1.2	25
15	Modulation of HIV Transmission by Neisseria gonorrhoeae: Molecular and Immunological Aspects. Current HIV Research, 2012, 10, 211-217.	0.2	57
16	Post-injury treatment with lipopolysaccharide or lipooligosaccharide protects rat neuronal and glial cell cultures. Brain Research Bulletin, 2011, 85, 403-409.	1.4	18
17	Human Lipooligosaccharide IGG That Prevents Endemic Meningococcal Disease Recognizes an Internal Lacto-N-neotetraose Structure. Journal of Biological Chemistry, 2011, 286, 43622-43633.	1.6	8
18	Phosphoryl Moieties of Lipid A from <i>Neisseria meningitidis</i> and <i>N. gonorrhoeae</i> Lipooligosaccharides Play an Important Role in Activation of Both MyD88- and TRIF-Dependent TLR4–MD-2 Signaling Pathways. Journal of Immunology, 2010, 185, 6974-6984.	0.4	56

#	Article	IF	CITATIONS
19	<i>Neisseria gonorrhoeae</i> Enhances HIV-1 Infection of Primary Resting CD4+ T Cells through TLR2 Activation. Journal of Immunology, 2010, 184, 2814-2824.	0.4	52
20	<i>Neisseria gonorrhoeae</i> Activates the Proteinase Cathepsin B to Mediate the Signaling Activities of the NLRP3 and ASC-Containing Inflammasome. Journal of Immunology, 2009, 182, 6460-6469.	0.4	231
21	Natural Phosphoryl and Acyl Variants of Lipid A from Neisseria meningitidis Strain 891 Differentially Induce Tumor Necrosis Factor-α in Human Monocytes. Journal of Biological Chemistry, 2009, 284, 21515-21525.	1.6	33
22	Profiles of structural heterogeneity in native lipooligosaccharides of Neisseria and cytokine induction. Journal of Lipid Research, 2009, 50, 424-438.	2.0	43
23	<i>Neisseria gonorrhoeae</i> -Induced Human Defensins 5 and 6 Increase HIV Infectivity: Role in Enhanced Transmission. Journal of Immunology, 2008, 180, 6176-6185.	0.4	87
24	Affinity-Purified Human Immunoglobulin G That Binds a Lacto- N -Neotetraose-Dependent Lipooligosaccharide Structure Is Bactericidal for Serogroup B Neisseria meningitidis. Infection and Immunity, 2007, 75, 1025-1033.	1.0	25
25	Gonococcal Lipooligosaccharide Suppresses HIV Infection in Human Primary Macrophages through Induction of Innate Immunity. Journal of Infectious Diseases, 2006, 194, 751-759.	1.9	30
26	Human T Lymphotropic Virus Type II Infection and Humoral Responses to Pneumococcal Polysaccharide and Tetanus Toxoid Vaccines. Journal of Infectious Diseases, 2005, 191, 1239-1244.	1.9	7
27	Mannose-Binding Lectin Binds to Two Major Outer Membrane Proteins, Opacity Protein and Porin, of <i>Neisseria meningitidis</i> . Journal of Immunology, 2004, 172, 3784-3792.	0.4	59
28	Activation of Toll-Like Receptor 2 (TLR2) and TLR4/MD2 by Neisseria Is Independent of Capsule and Lipooligosaccharide (LOS) Sialylation but Varies Widely among LOS from Different Strains. Infection and Immunity, 2003, 71, 3901-3908.	1.0	65
29	Truncated galectin-3 inhibits tumor growth and metastasis in orthotopic nude mouse model of human breast cancer. Clinical Cancer Research, 2003, 9, 2374-83.	3.2	91
30	Galectin-3 binds lactosaminylated lipooligosaccharides fromNeisseria gonorrhoeaeand is selectively expressed by mucosal epithelial cells that are infected. Cellular Microbiology, 2002, 4, 649-662.	1.1	62
31	CEACAM is not necessary for Neisseria gonorrhoeae to adhere to and invade female genital epithelial cells. Cellular Microbiology, 2001, 3, 681-691.	1.1	31
32	Invasion of Human Mucosal Epithelial Cells by <i>Neisseria gonorrhoeae</i> Upregulates Expression of Intercellular Adhesion Molecule 1 (ICAM-1). Infection and Immunity, 1999, 67, 1149-1156.	1.0	32
33	Expression and function of the complement membrane attack complex inhibitor protectin (CD59) in human prostate cancer., 1997, 71, 1049-1055.		53