
Nicholas Leventis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6020825/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoengineering Strong Silica Aerogels. Nano Letters, 2002, 2, 957-960.	9.1	478
2	Cross-linking Amine-Modified Silica Aerogels with Epoxies:Â Mechanically Strong Lightweight Porous Materials. Chemistry of Materials, 2005, 17, 1085-1098.	6.7	331
3	Three-Dimensional Core-Shell Superstructures: Mechanically Strong Aerogels. Accounts of Chemical Research, 2007, 40, 874-884.	15.6	288
4	Chemical, Physical, and Mechanical Characterization of Isocyanate Cross-linked Amine-Modified Silica Aerogels. Chemistry of Materials, 2006, 18, 285-296.	6.7	259
5	Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. Journal of Non-Crystalline Solids, 2004, 350, 152-164.	3.1	221
6	Click Synthesis of Monolithic Silicon Carbide Aerogels from Polyacrylonitrile-Coated 3D Silica Networks. Chemistry of Materials, 2010, 22, 2790-2803.	6.7	167
7	Time-Efficient Acid-Catalyzed Synthesis of Resorcinolâ~'Formaldehyde Aerogels. Chemistry of Materials, 2007, 19, 6138-6144.	6.7	164
8	Structureâ^'Property Relationships in Porous 3D Nanostructures as a Function of Preparation Conditions:Â Isocyanate Cross-Linked Silica Aerogels. Chemistry of Materials, 2007, 19, 2247-2260.	6.7	164
9	Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion. Chemistry of Materials, 1999, 11, 2837-2845.	6.7	163
10	Multifunctional Polyurea Aerogels from Isocyanates and Water. A Structureâ^'Property Case Study. Chemistry of Materials, 2010, 22, 6692-6710.	6.7	163
11	Flexible, low-density polymer crosslinked silica aerogels. Polymer, 2006, 47, 5754-5761.	3.8	136
12	One-step room-temperature synthesis of fibrous polyimide aerogels from anhydrides and isocyanates and conversion to isomorphic carbons. Journal of Materials Chemistry, 2010, 20, 9666.	6.7	134
13	Polyimide Aerogels by Ring-Opening Metathesis Polymerization (ROMP). Chemistry of Materials, 2011, 23, 2250-2261.	6.7	134
14	One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. Journal of the American Chemical Society, 2009, 131, 4576-4577.	13.7	131
15	Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. Journal of Materials Chemistry, 2006, 16, 3046.	6.7	125
16	Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules. Chemistry of Materials, 2013, 25, 3205-3224.	6.7	120
17	Cross-Linking 3D Assemblies of Nanoparticles into Mechanically Strong Aerogels by Surface-Initiated Free-Radical Polymerization. Chemistry of Materials, 2008, 20, 5035-5046.	6.7	112
18	The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides. Journal of Materials Chemistry, 2010, 20, 7456.	6.7	100

#	Article	IF	CITATIONS
19	Magnetohydrodynamic Electrochemistry in the Field of Ndâ^'Feâ^'B Magnets. Theory, Experiment, and Application in Self-Powered Flow Delivery Systems. Analytical Chemistry, 2001, 73, 3981-3992.	6.5	94
20	Electrochemistry with Stationary Disk and Ringâ^'Disk Millielectrodes in Magnetic Fieldsâ€. Journal of Physical Chemistry B, 1998, 102, 3512-3522.	2.6	93
21	Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels. Chemistry of Materials, 2008, 20, 6985-6997.	6.7	93
22	Smelting in the age of nano: iron aerogels. Journal of Materials Chemistry, 2009, 19, 63-65.	6.7	91
23	Polybenzoxazine Aerogels. 1. High-Yield Room-Temperature Acid-Catalyzed Synthesis of Robust Monoliths, Oxidative Aromatization, and Conversion to Microporous Carbons. Chemistry of Materials, 2014, 26, 1303-1317.	6.7	89
24	Cocoon-in-Web-Like Superhydrophobic Aerogels from Hydrophilic Polyurea and Use in Environmental Remediation. ACS Applied Materials & Interfaces, 2014, 6, 6872-6882.	8.0	87
25	Multifunctional porous aramids (aerogels) by efficient reaction of carboxylic acids and isocyanates. Journal of Materials Chemistry, 2011, 21, 11981.	6.7	84
26	Nanoengineered Silica-Polymer Composite Aerogels with No Need for Supercritical Fluid Drying. Journal of Sol-Gel Science and Technology, 2005, 35, 99-105.	2.4	80
27	Monolithic Hierarchical Fractal Assemblies of Silica Nanoparticles Cross-Linked with Polynorbornene via ROMP: A Structure–Property Correlation from Molecular to Bulk through Nano. Chemistry of Materials, 2012, 24, 3434-3448.	6.7	73
28	Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core–shell superstructures with skeletal properties of pure compounds. Journal of Materials Chemistry, 2007, 17, 1502-1508.	6.7	68
29	Polybenzoxazine Aerogels. 2. Interpenetrating Networks with Iron Oxide and the Carbothermal Synthesis of Highly Porous Monolithic Pure Iron(0) Aerogels as Energetic Materials. Chemistry of Materials, 2014, 26, 1318-1331.	6.7	68
30	Steady-State Voltammetry with Stationary Disk Millielectrodes in Magnetic Fields:Â Nonlinear Dependence of the Mass-Transfer Limited Current on the Electron Balance of the Faradaic Process. Journal of Physical Chemistry B, 1999, 103, 5832-5840.	2.6	65
31	Flexible Aerogels from Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) Versus Poly(Urethane Norbornenes). Chemistry of Materials, 2014, 26, 6979-6993.	6.7	65
32	Polymer nano-encapsulation of templated mesoporous silica monoliths with improved mechanical properties. Journal of Non-Crystalline Solids, 2008, 354, 632-644.	3.1	62
33	Synthesis and Characterization of Ru(II) Tris(1,10-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-Benzoyl-N-methylpyridinium Cation orN-Benzyl-Nâ€ ⁻ -methyl Viologen. Improving the Dynamic Range, Sensitivity, and Response Time of Solâ^'Gel-Based Optical Oxygen Sensors. Chemistry of Materials. 2004. 16. 1493-1506.	6.7	61
34	Resonance Raman Spectrum of the Phenanthroline Anion:Â Implications on Electron Delocalization in the MLCT Excited State of Ru(phen)32+. Inorganic Chemistry, 1996, 35, 5104-5106.	4.0	59
35	Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. Journal of Sol-Gel Science and Technology, 2008, 48, 113-134.	2.4	59
36	Sturdy, Monolithic SiC and Si ₃ N ₄ Aerogels from Compressed Polymer-Cross-Linked Silica Xerogel Powders. Chemistry of Materials, 2018, 30, 1635-1647.	6.7	59

#	Article	IF	CITATIONS
37	Shape Memory Superelastic Poly(isocyanurate-urethane) Aerogels (PIR-PUR) for Deployable Panels and Biomimetic Applications. Chemistry of Materials, 2017, 29, 4461-4477.	6.7	56
38	Electrochemically Assisted Solâ~'Gel Process for the Synthesis of Polysiloxane Films Incorporating Phenothiazine Dyes Analogous to Methylene Blue. Structure and Ion-Transport Properties of the Films via Spectroscopic and Electrochemical Characterization. Chemistry of Materials, 1997, 9, 2621-2631.	6.7	54
39	Demonstration of the Elusive Concentration-Gradient Paramagnetic Force. Journal of the American Chemical Society, 2005, 127, 4988-4989.	13.7	53
40	Ndâ~'Feâ~'B Permanent Magnet Electrodes. Theoretical Evaluation and Experimental Demonstration of the Paramagnetic Body Forces. Journal of the American Chemical Society, 2002, 124, 1079-1088.	13.7	52
41	Quantum dots by ultraviolet and x-ray lithography. Nanotechnology, 2007, 18, 315603.	2.6	51
42	From â€~Green' Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile. Chemistry of Materials, 2012, 24, 26-47.	6.7	49
43	Selective CO ₂ Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers. ACS Applied Materials & Interfaces, 2017, 9, 13520-13536.	8.0	48
44	Arylethynyl Substituted 9,10-Anthraquinones:Â Tunable Stokes Shifts by Substitution and Solvent Polarity. Chemistry of Materials, 2004, 16, 3457-3468.	6.7	47
45	Characterization of 3 × 3 Matrix Arrays of Solutionâ€Phase Electrochromic Cells. Journal of the Electrochemical Society, 1998, 145, L55-L58.	2.9	45
46	In Vivo Ultrasonic Detection of Polyurea Crosslinked Silica Aerogel Implants. PLoS ONE, 2013, 8, e66348.	2.5	45
47	Polydicyclopentadiene aerogels grafted with PMMA: I. Molecular and interparticle crosslinking. Soft Matter, 2013, 9, 1516-1530.	2.7	43
48	Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons. RSC Advances, 2013, 3, 26459.	3.6	43
49	Correlation of microstructure and thermal conductivity in nanoporous solids: The case of polyurea aerogels synthesized from an aliphatic tri-isocyanate and water. Journal of Non-Crystalline Solids, 2013, 368, 105-111.	3.1	38
50	Investigation of Polyurea-Crosslinked Silica Aerogels as a Neuronal Scaffold: A Pilot Study. PLoS ONE, 2012, 7, e33242.	2.5	38
51	Low-Cost, Ambient-Dried, Superhydrophobic, High Strength, Thermally Insulating, and Thermally Resilient Polybenzoxazine Aerogels. ACS Applied Polymer Materials, 2019, 1, 2322-2333.	4.4	37
52	New complementary electrochromic system based on poly(pyrrole)-Prussian blue composite, a benzylviologen polymer, and poly(vinylpyrrolidone)/potassium sulfate aqueous electrolyte. Chemistry of Materials, 1992, 4, 1415-1422.	6.7	36
53	Formation and Entrapment of Noble Metal Clusters in Silica Aerogel Monoliths by Î ³ -Radiolysis. Journal of Physical Chemistry B, 2003, 107, 465-469.	2.6	36
54	Polydicyclopentadiene aerogels grafted with PMMA: II. Nanoscopic characterization and origin of macroscopic deformation. Soft Matter, 2013, 9, 1531-1539.	2.7	36

#	Article	IF	CITATIONS
55	Histological Evaluation of the Biocompatibility of Polyurea Crosslinked Silica Aerogel Implants in a Rat Model: A Pilot Study. PLoS ONE, 2012, 7, e50686.	2.5	36
56	A Three-Dimensional Energy Surface for the Conformational Inversion of Cyclohexane. Journal of Chemical Education, 1997, 74, 813.	2.3	34
57	Synthesis and mechanical characterization of mechanically strong, polyurea-crosslinked, ordered mesoporous silica aerogels. Journal of Sol-Gel Science and Technology, 2015, 75, 98-123.	2.4	34
58	Nanoporous Polyurea from a Triisocyanate and Boric Acid: A Paradigm of a General Reaction Pathway for Isocyanates and Mineral Acids. Chemistry of Materials, 2016, 28, 67-78.	6.7	34
59	Sound insulation properties in low-density, mechanically strong and ductile nanoporous polyurea aerogels. Journal of Non-Crystalline Solids, 2017, 476, 36-45.	3.1	34
60	Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. Journal of Sol-Gel Science and Technology, 2019, 92, 84-100.	2.4	34
61	Reuseable Monolithic Nanoporous Graphite-Supported Nanocatalysts (Fe, Au, Pt, Pd, Ni, and Rh) from Pyrolysis and Galvanic Transmetalation of Ferrocene-Based Polyamide Aerogels. Chemistry of Materials, 2016, 28, 4867-4877.	6.7	33
62	Nanostructure-Dependent Marcus-Type Correlation of the Shape Recovery Rate and the Young's Modulus in Shape Memory Polymer Aerogels. ACS Applied Materials & Interfaces, 2018, 10, 23321-23334.	8.0	33
63	Using Nanoscopic Hosts, Magnetic Guests, and Field Alignment to Create Anisotropic Composite Gels and Aerogels. Nano Letters, 2002, 2, 63-67.	9.1	32
64	Evaluation of Dysprosia Aerogels as Drug Delivery Systems: A Comparative Study with Random and Ordered Mesoporous Silicas. ACS Applied Materials & Interfaces, 2014, 6, 4891-4902.	8.0	31
65	<i>K</i> -Index: A Descriptor, Predictor, and Correlator of Complex Nanomorphology to Other Material Properties. ACS Nano, 2019, 13, 3677-3690.	14.6	29
66	Tuning the Redox Chemistry of 4-Benzoyl-N-methylpyridinium Cations through Para Substitution. Hammett Linear Free Energy Relationships and the Relative Aptitude of the Two-Electron Reduced Forms for H-Bonding. Journal of Organic Chemistry, 2002, 67, 7501-7510.	3.2	27
67	Stresses at the Interface of Micro with Nano. Journal of the American Chemical Society, 2007, 129, 10660-10661.	13.7	27
68	Control of the Ketone to gem-Diol Equilibrium by Hostâ^'Guest Interactions. Organic Letters, 2008, 10, 1131-1134.	4.6	26
69	Scalable, hydrophobic and highly-stretchable poly(isocyanurate–urethane) aerogels. RSC Advances, 2018, 8, 21214-21223.	3.6	26
70	Fabrication of functionally graded aerogels, cellular aerogels and anisotropic ceramics. Journal of Materials Chemistry, 2011, 21, 11737.	6.7	25
71	Air-oxidation of phenolic resin aerogels: backbone reorganization, formation of ring-fused pyrylium cations, and the effect on microporous carbons with enhanced surface areas. RSC Advances, 2017, 7, 51104-51120.	3.6	25
72	Exceptionally High CO ₂ Adsorption at 273 K by Microporous Carbons from Phenolic Aerogels: The Role of Heteroatoms in Comparison with Carbons from Polybenzoxazine and Other Organic Aerogels. Macromolecular Chemistry and Physics, 2019, 220, 1800333.	2.2	25

#	Article	IF	CITATIONS
73	Simultaneous Electron Transfer from Free and Intercalated 4-Benzoylpyridinium Cations in Cucurbit[7]uril. Organic Letters, 2009, 11, 1595-1598.	4.6	23
74	Robust PEDOT films by covalent bonding to substrates using in tandem sol–gel, surface initiated free-radical and redox polymerization. Journal of Materials Chemistry, 2012, 22, 100-108.	6.7	23
75	Magnetic Field Effects on the Open Circuit Potential of Ferromagnetic Electrodes in Corroding Solutions. Journal of Physical Chemistry B, 2005, 109, 11065-11073.	2.6	22
76	Polydicyclopentadiene aerogels from first- versus second-generation Grubbs' catalysts: a molecular versus a nanoscopic perspective. Journal of Sol-Gel Science and Technology, 2015, 75, 460-474.	2.4	22
77	Polymer-Crosslinked Aerogels. , 2011, , 251-285.		22
78	The Redox Chemistry of 4-Benzoyl-N-methylpyridinium Cations in Acetonitrile with and without Proton Donors:Â The Role of Hydrogen Bonding. Journal of Physical Chemistry B, 2001, 105, 3663-3674.	2.6	21
79	Orientation of Pyrylium Guests in Cucurbituril Hosts. Journal of Organic Chemistry, 2012, 77, 2263-2271.	3.2	21
80	Light scattering and haze in TMOS-co-APTES silica aerogels. Journal of Sol-Gel Science and Technology, 2019, 90, 127-139.	2.4	21
81	A cyclic voltammetric study of the proton abstraction from selected aromatic ketones by superoxide. Electrochimica Acta, 2000, 45, 2049-2059.	5.2	20
82	Micromachining of polyurea aerogel using femtosecond laser pulses. Journal of Non-Crystalline Solids, 2011, 357, 186-193.	3.1	20
83	Photolithographic Patterning and Doping of Silica Xerogel Films. Journal of Sol-Gel Science and Technology, 2002, 23, 235-245.	2.4	19
84	A Cobalt Sunrise: Thermites Based on LiClO ₄ -Filled Co(0) Aerogels Prepared from Polymer-Cross-Linked Cobaltia Xerogel Powders. ACS Applied Materials & Interfaces, 2019, 11, 22668-22676.	8.0	19
85	Mechanical Characterization of Aerogels. , 2011, , 499-535.		19
86	Polyurea Aerogels: Synthesis, Material Properties, and Applications. Polymers, 2022, 14, 969.	4.5	19
87	One-step synthesis and redox properties of dodecahydro-3a,9a-diazaperylene—the most easily oxidized p-phenylenediamine. Chemical Communications, 2001, , 1742-1743.	4.1	18
88	Redox-Active Star Molecules Incorporating the 4-Benzoylpyridinium Cation:Â Implications for the Charge Transfer Efficiency along Branches vs Across the Perimeter in Dendrimers. Journal of the American Chemical Society, 2004, 126, 4094-4095.	13.7	17
89	Characterization of the Biocompatibility and Mechanical Properties of Polyurea Organic Aerogels with the Vascular System: Potential as a Blood Implantable Material. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013, 62, 109-118.	3.4	17
90	Thinâ€Layer Type Electrochemistry and Stability Studies of Prussian Blue Films in nonâ€Aqueous Electrolytes. Journal of the Electrochemical Society, 1991, 138, L21-L23.	2.9	16

#	Article	IF	CITATIONS
91	Spectroscopic evaluation of polyurea crosslinked aerogels, as a substitute for RTV-based chromatic calibration targets for spacecraft. Advances in Space Research, 2011, 47, 419-427.	2.6	16
92	Explosive versus Thermite Behavior in Iron(0) Aerogels Infiltrated with Perchlorates. Chemistry of Materials, 2015, 27, 8126-8137.	6.7	16
93	Multi-scale progressive failure mechanism and mechanical properties of nanofibrous polyurea aerogels. Soft Matter, 2018, 14, 7801-7808.	2.7	16
94	Experimental deconvolution of depressurization from capillary shrinkage during drying of silica wet-gels with SCF CO2 why aerogels shrink?. Journal of Sol-Gel Science and Technology, 2019, 92, 662-680.	2.4	16
95	Synthesis of Substituted Phenothiazines Analogous to Methylene Blue by Electrophilic and Nucleophilic Aromatic Substitutions in Tandem. A Mechanistic Perspective Tetrahedron, 1997, 53, 10083-10092.	1.9	15
96	Economical synthesis of vanadia aerogels via epoxide-assisted gelation of VOCl3. Journal of Sol-Gel Science and Technology, 2016, 77, 244-256.	2.4	15
97	Sound Transmission Loss Enhancement in an Inorganicâ€Organic Laminated Wall Panel Using Multifunctional Lowâ€Đensity Nanoporous Polyurea Aerogels: Experiment and Modeling. Advanced Engineering Materials, 2018, 20, 1700937.	3.5	15
98	Meta-Aerogels: Auxetic Shape-Memory Polyurethane Aerogels. ACS Applied Polymer Materials, 2021, 3, 5727-5738.	4.4	15
99	Immobilization of Pd Catalysts on Mesoporous Silica for Amine- and Copper-Free Sonogashira Coupling Reactions. Synthetic Communications, 2008, 38, 2285-2298.	2.1	14
100	Nerve Response to Superelastic Shape Memory Polyurethane Aerogels. Polymers, 2020, 12, 2995.	4.5	13
101	Microfabrication of WO3â€based microelectrochemical devices. Journal of Applied Physics, 1989, 66, 965-968.	2.5	12
102	Preparation and characterization of tungsten trioxide/dibenzyl viologen polymer bilayer electrochromic films. Journal of Materials Chemistry, 1993, 3, 833.	6.7	12
103	Characterization of a "solid-state" microelectrochemical diode employing a poly(vinyl) Tj ETQq1 1 0.784314 rgBT (WO3) and polyaniline. Chemistry of Materials, 1990, 2, 568-576.	/Overlock 6.7	10 Tf 50 2 <mark>6</mark> 11
104	Nonadditive Voltammetric Currents from Two Redox-Active Substances and Electroanalytical Implications. Analytical Chemistry, 2003, 75, 4996-5005.	6.5	11
105	Characterization of the Physical Properties and Biocompatibility of Polybenzoxazine-Based Aerogels for Use as a Novel Hard-Tissue Scaffold. Journal of Biomaterials Science, Polymer Edition, 2012, ahead-of-print, 1-14.	3.5	11
106	Synthesis, optical properties and photovoltaic applications of hybrid rod–coil diblock copolymers with coordinatively attached CdSe nanocrystals. RSC Advances, 2014, 4, 35823-35832.	3.6	11
107	Synthesis and near IR photoluminescence of Os(II) bis(2,2′-bipyridine) (3,8-diarylethynyl-1,10-phenanthroline) complexes: anomalous behavior in the 3,8-dinitrophenylethynyl-substituted homologue. Inorganica Chimica Acta, 2005, 358, 389-395.	2.4	10
108	Isocyanate-Derived Organic Aerogels: Polyureas, Polyimides, Polyamides. Materials Research Society Symposia Proceedings, 2011, 1306, 1.	0.1	10

#	Article	IF	CITATIONS
109	Bioinspired strong nanocellular composite prepared with magnesium phosphate cement and polyurea aerogel. Materials Letters, 2019, 237, 274-277.	2.6	9
110	Poly(3-methylthiophene)–Prussian Blue: a new composite electrochromic material. Journal of Materials Chemistry, 1992, 2, 289-293.	6.7	8
111	Protection of 2-(3-thienyl)ethanol with 3-thienylacetic acid and hard cross-linked conducting films by electropolymerization of the ester. Synthetic Metals, 2006, 156, 966-972.	3.9	8
112	Mass transfer effects on the electropolymerization current efficiency of 3-methylthiophene in the magnetic field. Journal of Solid State Electrochemistry, 2007, 11, 727-735.	2.5	8
113	Luminescent LaF3:Ce-doped organically modified nanoporous silica xerogels. Journal of Applied Physics, 2013, 113, .	2.5	8
114	Microstructural Characteristics of Polyurea and Polyurethanexerogels for Concrete Confinement with FRP System. Advanced Materials Research, 2013, 742, 237-242.	0.3	8
115	Polyurethane Aerogels Based on Cyclodextrins: High-Capacity Desiccants Regenerated at Room Temperature by Reducing the Relative Humidity of the Environment. ACS Applied Materials & Interfaces, 2019, 11, 34292-34304.	8.0	8
116	Preparation of Carbon Aerogels from Polymer-Cross-Linked Xerogel Powders without Supercritical Fluid Drying and Their Application in Highly Selective CO ₂ Adsorption. Chemistry of Materials, 2022, 34, 4828-4847.	6.7	8
117	Photodisproportionation of (4-acylpyridine)tungsten(0) pentacarbonyl complexes. Journal of the American Chemical Society, 1985, 107, 5807-5809.	13.7	7
118	Slow triplet energy transfer to lower excited states in ruthenium(II) acylpyridine complexes. Journal of the American Chemical Society, 1987, 109, 2188-2190.	13.7	7
119	Breaking Aggregation and Driving the Keto-to-gem-Diol Equilibrium of the N,N′-Dimethyl-2,6-diaza-9,10-anthraquinonediium Dication to the Keto Form by Intercalation in Cucurbit[7]uril. Journal of Organic Chemistry, 2013, 78, 8297-8304.	3.2	7
120	Synthesis of aerogel foams through a pressurized sol-gel method. Polymer, 2020, 208, 122925.	3.8	7
121	Synthesis and Spectroscopic Properties of the Elusive 3a,9a-Diazaperylenium Dication. Organic Letters, 2002, 4, 4113-4116.	4.6	6
122	Electrochemical reduction of 4-benzoyl-N-(4-substituted benzyl)pyridinium cations: substitution effects and linear free energy relationships. Electrochimica Acta, 2003, 48, 2799-2806.	5.2	6
123	Resonant Two-Photon Oxidation in Vanadium Oxyhydrate Nanowires above a Threshold Laser Intensity. Journal of Physical Chemistry C, 2012, 116, 10186-10192.	3.1	6
124	Metamaterial-like aerogels for broadband vibration mitigation. Soft Matter, 2021, 17, 4496-4503.	2.7	6
125	Low-temperature catalytic synthesis of graphite aerogels from polyacrylonitrile-crosslinked iron oxide and cobalt oxide xerogel powders. Carbon, 2022, 193, 107-127.	10.3	6
126	Relative reactivity of vitamin A versus a mixture of Î ² -carotene geometric isomers with electrochemically generated superoxide and hydroperoxyl radicals. Electrochimica Acta, 2001, 47, 567-576.	5.2	5

#	Article	IF	CITATIONS
127	Non-additive voltammetric currents from multicomponent systems of redox-active substances. Electrochimica Acta, 2005, 50, 4134-4139.	5.2	5
128	Interpenetrating Organic/Inorganic Networks of Resorcinol-Formaldehyde/Metal Oxide Aerogels. , 2011, , 287-313.		5
129	Ru(II) Tris(3,8â€Dibromoâ€1,10â€Phenanthroline)—A New Versatile Core for the Divergent Synthesis of Hyperbranched Systems. Synthetic Communications, 2004, 34, 3491-3496.	2.1	4
130	Multiple Substitution Effects and Three-Dimensional Nonlinear Free-Energy Relationships in the Electrochemical Reduction of theN,Nâ€~-Dibenzyl Viologen and the 4-Benzoyl-N-benzylpyridinium Cation. Journal of Physical Chemistry B, 2004, 108, 11228-11235.	2.6	4
131	Modeling and Numerical Simulation of Magnetic Field Coupled Electrochemical Processes. ECS Transactions, 2008, 13, 33-43.	0.5	4
132	Noninvasive Detection, Tracking, and Characterization of Aerogel Implants Using Diagnostic Ultrasound. Polymers, 2022, 14, 722.	4.5	4
133	Coupling of 3,8-Dibromo-1,10-phenanthroline with 3,5-Diethynylheptyloxybenzene: A Suzuki/Miyaura Versus a Sonogashira Perspective. Synthetic Communications, 2003, 33, 3317-3325.	2.1	3
134	Redox reactivity and comprehensive synthetic chemistry of the perchloroditungstate [W2(μ-Cl)3Cl6]nâ^' (n=3, 2, 1) anions in organic media. Polyhedron, 2008, 27, 2859-2866.	2.2	2
135	One Pot Synthesis of Multifunctional Aramid Aerogels. Materials Research Society Symposia Proceedings, 2012, 1403, 126.	0.1	2
136	From Flexible to Hard Polyurethane Aerogels: The Effect of Molecular Functionality vs. Molecular Rigidity. Materials Research Society Symposia Proceedings, 2012, 1403, 114.	0.1	2
137	Piezoresistive geopolymer enabled by crack-surface coating. Materials Letters, 2019, 255, 126582.	2.6	2
138	Funnel-like Flow Generated Electrochemically in Paramagnetic Media by the Two Paramagnetic Body Forces. ECS Transactions, 2008, 13, 25-31.	0.5	1
139	Relative Stabilities and Reactivities of Isolated Versus Conjugated Alkenes: Reconciliation Via a Molecular Orbital Approach. Journal of Chemical Education, 1996, 73, 295.	2.3	0
140	Synthesis of Aerogel-Metal Cluster Composites by Gamma Radiolysis. Materials Research Society Symposia Proceedings, 2002, 740, 1.	0.1	0