
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A climate-resilient marine conservation network for Canada. Facets, 2022, 7, 571-590.	2.4	25
2	Incorporating anthropogenic thresholds to improve understanding of cumulative effects on seagrass beds. Facets, 2022, 7, 966-987.	2.4	3
3	From coast to coast to coast: ecology and management of seagrass ecosystems across Canada. Facets, 2021, 6, 139-179.	2.4	28
4	Effects of climate change on food production (fishing). , 2021, , 205-231.		3
5	Challenges of Gauging the Impact of Area-Based Fishery Closures and OECMs: A Case Study Using Long-Standing Canadian Groundfish Closures. Frontiers in Marine Science, 2021, 8, .	2.5	8
6	Phytoplankton nutritional quality is altered by shifting Si:N ratios and selective grazing. Journal of Plankton Research, 2021, 43, 325-337.	1.8	4
7	The status of climate change adaptation in fisheries management: Policy, legislation and implementation. Fish and Fisheries, 2021, 22, 1248-1273.	5.3	38
8	Interactions between finfish aquaculture and American lobster in Atlantic Canada. Ocean and Coastal Management, 2021, 210, 105664.	4.4	3
9	Marine biodiversity and climate change. , 2021, , 445-464.		28
10	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	18.8	96
11	Marine biodiversity conservation. Current Biology, 2021, 31, R1190-R1195.	3.9	20
12	Ten new insights in climate science 2021: a horizon scan. Global Sustainability, 2021, 4, .	3.3	26
13	WTO must ban harmful fisheries subsidies. Science, 2021, 374, 544-544.	12.6	45
14	Advancing Global Ecological Modeling Capabilities to Simulate Future Trajectories of Change in Marine Ecosystems. Frontiers in Marine Science, 2020, 7, .	2.5	43
15	Future ocean biomass losses may widen socioeconomic equity gaps. Nature Communications, 2020, 11, 2235.	12.8	43
16	Incorporating climate change adaptation into marine protected area planning. Global Change Biology, 2020, 26, 3251-3267.	9.5	103
17	Rebuilding marine life. Nature, 2020, 580, 39-51.	27.8	560
18	Decrease in diatom dominance at lower Si:N ratios alters plankton food webs. Journal of Plankton Research, 2020, 42, 411-424.	1.8	6

#	Article	IF	CITATIONS
19	Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans. Facets, 2020, 5, 105-122.	2.4	20
20	Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Marine Ecology - Progress Series, 2020, 648, 1-17.	1.9	16
21	Combining love and knowledge to heal the ocean. Ethics in Science and Environmental Politics, 2020, 20, 33-39.	7.9	3
22	Eelgrass (Zostera marina) and benthic habitat mapping in Atlantic Canada using high-resolution SPOT 6/7 satellite imagery. Estuarine, Coastal and Shelf Science, 2019, 226, 106292.	2.1	23
23	Ecosystem-based management of seaweed harvesting. Botanica Marina, 2019, 62, 395-409.	1.2	30
24	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	7.1	357
25	Spatiotemporal bycatch analysis of the Atlantic halibut (Hippoglossus hippoglossus) longline fishery survey indicates hotspots for species of conservation concern. Conservation Science and Practice, 2019, 1, e3.	2.0	1
26	Projected 21stâ€century distribution of canopyâ€forming seaweeds in the Northwest Atlantic with climate change. Diversity and Distributions, 2019, 25, 582-602.	4.1	70
27	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	12.8	168
28	Integrating climate adaptation and biodiversity conservation in the global ocean. Science Advances, 2019, 5, eaay9969.	10.3	133
29	Twentyâ€firstâ€century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology, 2019, 25, 459-472.	9.5	151
30	Linking eutrophication indicators in eelgrass habitats to nitrogen loading and mitigating site characteristics in eastern New Brunswick, Canada. Marine Environmental Research, 2019, 144, 141-153.	2.5	9
31	A human impact metric for coastal ecosystems with application to seagrass beds in Atlantic Canada. Facets, 2019, 4, 210-237.	2.4	25
32	Climate change projections reveal range shifts of eelgrass Zostera marina in the Northwest Atlantic. Marine Ecology - Progress Series, 2019, 620, 47-62.	1.9	36
33	Spatiotemporal bycatch analysis of the Atlantic halibut (Hippoglossus hippoglossus) longline fishery survey indicates hotspots for species of conservation concern. Conservation Science and Practice, 2019, 1, e3.	2.0	1
34	Large-Scale Differences in Community Structure and Ecosystem Services of Eelgrass (Zostera marina) Beds Across Three Regions in Eastern Canada. Estuaries and Coasts, 2018, 41, 177-192.	2.2	12
35	Public perceptions of marine threats and protection from around the world. Ocean and Coastal Management, 2018, 152, 14-22.	4.4	133
36	Spatial Variation of Macroinfaunal Communities Associated with Zostera marina Beds Across Three Biogeographic Regions in Atlantic Canada. Estuaries and Coasts, 2018, 41, 1381-1396.	2.2	8

#	Article	IF	CITATIONS
37	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	3.6	116
38	Sea-cage aquaculture impacts market and berried lobster (Homarus americanus) catches. Marine Ecology - Progress Series, 2018, 598, 85-97.	1.9	8
39	Potential impacts of finfish aquaculture on eelgrass (<i>Zostera marina</i>) beds and possible monitoring metrics for management: a case study in Atlantic Canada. PeerJ, 2018, 6, e5630.	2.0	13
40	Critical factors for the recovery of marine mammals. Conservation Biology, 2017, 31, 1301-1311.	4.7	14
41	Regional-Scale Differences in Eutrophication Effects on Eelgrass-Associated (Zostera marina) Macrofauna. Estuaries and Coasts, 2017, 40, 1096-1112.	2.2	22
42	Plastic as a Persistent Marine Pollutant. Annual Review of Environment and Resources, 2017, 42, 1-26.	13.4	497
43	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	7.8	161
44	Effectiveness of lobster fisheries management in New Zealand and Nova Scotia from multi-species and ecosystem perspectives. ICES Journal of Marine Science, 2017, 74, 146-157.	2.5	6
45	Ecosystem effects of invertebrate fisheries. Fish and Fisheries, 2017, 18, 40-53.	5.3	52
46	Assessing the impacts of 1.5â€ ⁻ °C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	3.6	410
47	The Vulnerability, Impacts, Adaptation and Climate Services Advisory Board (VIACS AB v1.0) contribution to CMIP6. Geoscientific Model Development, 2016, 9, 3493-3515.	3.6	31
48	Marine Biodiversity and Climate Change. , 2016, , 195-212.		24
49	Regional differences and linkage between canopy structure and community composition of rockweed habitats in Atlantic Canada. Marine Biology, 2016, 163, 1.	1.5	9
50	Ecological Indicators and Food-Web Models as Tools to Study Historical Changes in Marine Ecosystems. , 2016, , 103-132.		3
51	Historical abundance of juvenile commercial fish in coastal habitats: Implications for fish habitat management in Canada. Marine Policy, 2016, 73, 235-243.	3.2	9
52	Interactive effects of increasing temperature and nutrient loading on the habitat-forming rockweed Ascophyllum nodosum. Aquatic Botany, 2016, 133, 70-78.	1.6	11
53	Long-term shift in coastal fish communities before and after the collapse of Atlantic cod (Gadus) Tj ETQq1 1 0.7	784314 rgE 2.5	BT /Overlock
54	Comparative analysis of different survey methods for monitoring fish assemblages in coastal habitats. PeerJ, 2016, 4, e1832.	2.0	32

#	Article	IF	CITATIONS
55	Marine extinction risk shaped by trait–environment interactions over 500Âmillion years. Global Change Biology, 2015, 21, 3595-3607.	9.5	31
56	Trade-offs between invertebrate fisheries catches and ecosystem impacts in coastal New Zealand. ICES Journal of Marine Science, 2015, 72, 1380-1388.	2.5	17
57	Youth and the sea: Ocean literacy in Nova Scotia, Canada. Marine Policy, 2015, 58, 98-107.	3.2	107
58	Paleontological baselines for evaluating extinction risk in the modern oceans. Science, 2015, 348, 567-570.	12.6	111
59	Land use and nitrogen loading in seven estuaries along the southern Gulf of St. Lawrence, Canada. Estuarine, Coastal and Shelf Science, 2015, 165, 137-148.	2.1	29
60	Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. Marine Biology, 2015, 162, 2431-2444.	1.5	43
61	Expansion of hagfish fisheries in Atlantic Canada and worldwide. Fisheries Research, 2015, 161, 24-33.	1.7	6
62	Predator decline leads to decreased stability in a coastal fish community. Ecology Letters, 2014, 17, 1518-1525.	6.4	85
63	Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Scientific Reports, 2013, 3, 1057.	3.3	97
64	Recovery Trends in Marine Mammal Populations. PLoS ONE, 2013, 8, e77908.	2.5	145
65	Assessing global marine fishery status with a revised dynamic catch-based method and stock-assessment reference points. ICES Journal of Marine Science, 2012, 69, 1491-1500.	2.5	19
66	Regionalâ \in scale effects of eutrophication on ecosystem structure and services of seagrass beds. Limnology and Oceanography, 2012, 57, 1389-1402.	3.1	72
67	Extinctions in ancient and modern seas. Trends in Ecology and Evolution, 2012, 27, 608-617.	8.7	221
68	Recovery potential and conservation options for elasmobranchs. Journal of Fish Biology, 2012, 80, 1844-1869.	1.6	91
69	Recovery of marine animal populations and ecosystems. Trends in Ecology and Evolution, 2011, 26, 595-605.	8.7	338
70	Rapid Global Expansion of Invertebrate Fisheries: Trends, Drivers, and Ecosystem Effects. PLoS ONE, 2011, 6, e14735.	2.5	176
71	Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts. PLoS ONE, 2011, 6, e22591.	2.5	66
72	Assessing the Value of Recreational Divers for Censusing Elasmobranchs. PLoS ONE, 2011, 6, e25609.	2.5	47

Ηεικε Κ Lotze

#	Article	IF	CITATIONS
73	Serial exploitation of global sea cucumber fisheries. Fish and Fisheries, 2011, 12, 317-339.	5.3	244
74	Spatial and temporal trends in yellow stingray abundance: evidence from diver surveys. Environmental Biology of Fishes, 2011, 90, 263-276.	1.0	24
75	Historical Changes in Marine Resources, Food-web Structure and Ecosystem Functioning in the Adriatic Sea, Mediterranean. Ecosystems, 2011, 14, 198-222.	3.4	212
76	Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Marine Ecology - Progress Series, 2011, 437, 51-68.	1.9	69
77	Acute effects of removing large fish from a near-pristine coral reef. Marine Biology, 2010, 157, 2739-2750.	1.5	50
78	Global patterns and predictors of marine biodiversity across taxa. Nature, 2010, 466, 1098-1101.	27.8	1,131
79	Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters, 2010, 13, 1055-1071.	6.4	706
80	The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE, 2010, 5, e11842.	2.5	1,439
81	Historical Reconstruction of Human-Induced Changes in U.S. Estuaries. Oceanography and Marine Biology, 2010, , 267-338.	1.0	25
82	Overestimating Fish Counts by Non-Instantaneous Visual Censuses: Consequences for Population and Community Descriptions. PLoS ONE, 2010, 5, e11722.	2.5	119
83	Large-Scale Absence of Sharks on Reefs in the Greater-Caribbean: A Footprint of Human Pressures. PLoS ONE, 2010, 5, e11968.	2.5	173
84	Changes in Marine Biodiversity as an Indicator of Climate Change. , 2009, , 263-279.		11
85	Historical baselines for large marine animals. Trends in Ecology and Evolution, 2009, 24, 254-262.	8.7	278
86	Rebuilding Global Fisheries. Science, 2009, 325, 578-585.	12.6	1,722
87	Structural Degradation in Mediterranean Sea Food Webs: Testing Ecological Hypotheses Using Stochastic and Mass-Balance Modelling. Ecosystems, 2008, 11, 939-960.	3.4	92
88	Loss of Large Predatory Sharks from the Mediterranean Sea. Conservation Biology, 2008, 22, 952-964.	4.7	398
89	Evaluating the knowledge base for expanding low-trophic-level fisheries in Atlantic Canada. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2553-2571.	1.4	36
90	Rise and fall of fishing and marine resource use in the Wadden Sea, southern North Sea. Fisheries Research, 2007, 87, 208-218.	1.7	62

#	Article	IF	CITATIONS
91	Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science, 2006, 314, 787-790.	12.6	3,422
92	Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 2006, 312, 1806-1809.	12.6	2,550
93	Effects of eutrophication, grazing, and algal blooms on rocky shores. Limnology and Oceanography, 2006, 51, 569-579.	3.1	195
94	Ecological history of the Wadden Sea. Helgoland Marine Research, 2005, 59, 1-1.	1.3	2
95	Radical changes in the Wadden Sea fauna and flora over the last 2,000�years. Helgoland Marine Research, 2005, 59, 71-83.	1.3	79
96	Human transformations of the Wadden Sea ecosystem through time: a synthesis. Helgoland Marine Research, 2005, 59, 84-95.	1.3	123
97	Global Patterns of Predator Diversity in the Open Oceans. Science, 2005, 309, 1365-1369.	12.6	324
98	UV effects that come and go: a global comparison of marine benthic community level impacts. Global Change Biology, 2004, 10, 1962-1972.	9.5	52
99	TWO CENTURIES OF MULTIPLE HUMAN IMPACTS AND SUCCESSIVE CHANGES IN A NORTH ATLANTIC FOOD WEB. , 2004, 14, 1428-1447.		185
100	Predator diversity hotspots in the blue ocean. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9884-9888.	7.1	230
101	Complex interactions of climatic and ecological controls on macroalgal recruitment. Limnology and Oceanography, 2002, 47, 1734-1741.	3.1	121
102	Consumer versus resource control of species diversity and ecosystem functioning. Nature, 2002, 417, 848-851.	27.8	417
103	Effects of UV radiation and consumers on recruitment and succession of a marine macrobenthic community. Marine Ecology - Progress Series, 2002, 243, 57-66.	1.9	40
104	Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia, 2001, 128, 281-293.	2.0	106
105	Ecophysiological traits explain species dominance patterns in macroalgal blooms. Journal of Phycology, 2001, 36, 287-295.	2.3	91
106	Strong bottomâ€up and topâ€down control of early life stages of macroalgae. Limnology and Oceanography, 2001, 46, 749-757.	3.1	124
107	Coastal food web structure, carbon storage, and nitrogen retention regulated by consumer pressure and nutrient loading. Limnology and Oceanography, 2000, 45, 339-349.	3.1	146
108	In situNutrient Enrichment: Methods for Marine Benthic Ecology. International Review of Hydrobiology, 2000, 85, 359-375.	0.9	143

#	Article	IF	CITATIONS
109	COMMON FRESHWATER ALGAE OF THE UNITED STATES. Journal of Phycology, 2000, 36, 622-622.	2.3	Ο
110	Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos, 2000, 89, 46-58.	2.7	132
111	Variable and complementary effects of herbivores on different life stages of bloom-forming macroalgae. Marine Ecology - Progress Series, 2000, 200, 167-175.	1.9	74
112	Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecology - Progress Series, 2000, 204, 27-38.	1.9	151
113	Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp Oecologia, 1999, 119, 46-54.	2.0	110
114	Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Marine Ecology - Progress Series, 1999, 185, 309-314.	1.9	142