Jean Duhamel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6020526/publications.pdf

Version: 2024-02-01

186254 197805 2,893 106 28 49 citations h-index g-index papers 106 106 106 1943 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Fluorescence Studies of Associating Polymers in Water: Determination of the Chain end Aggregation Number and a Model for the Association Process. Macromolecules, 1995, 28, 956-966.	4.8	273
2	New Insights in the Study of Pyrene Excimer Fluorescence to Characterize Macromolecules and their Supramolecular Assemblies in Solution. Langmuir, 2012, 28, 6527-6538.	3. 5	184
3	A fluorescent probe study of micelle-like cluster formation in aqueous solutions of hydrophobically modified poly(ethylene oxide). Macromolecules, 1993, 26, 1829-1836.	4.8	165
4	Self-Assembling Peptide as a Potential Carrier of Hydrophobic Compounds. Journal of the American Chemical Society, 2004, 126, 7522-7532.	13.7	100
5	Polymer Chain Dynamics in Solution Probed with a Fluorescence Blob Model. Accounts of Chemical Research, 2006, 39, 953-960.	15.6	91
6	A Blob Model To Study Chain Folding by Fluorescence. Macromolecules, 1999, 32, 7100-7108.	4.8	84
7	Internal Dynamics of Dendritic Molecules Probed by Pyrene Excimer Formation. Polymers, 2012, 4, 211-239.	4.5	80
8	Side-Chain Dynamics of an \hat{l} ±-Helical Polypeptide Monitored by Fluorescence. Journal of the American Chemical Society, 2003, 125, 12810-12822.	13.7	75
9	Global Analysis of Fluorescence Decays to Probe the Internal Dynamics of Fluorescently Labeled Macromolecules. Langmuir, 2014, 30, 2307-2324.	3 . 5	62
10	Fluorescence Emission of Ethidium Bromide Intercalated in Defined DNA Duplexes: Evaluation of Hydrodynamics Componentsâ€. Biochemistry, 1996, 35, 16687-16697.	2.5	61
11	Synthesis and Characterization of Novel Pyrene-Dendronized Porphyrins Exhibiting Efficient Fluorescence Resonance Energy Transfer: Optical and Photophysical Properties. Langmuir, 2012, 28, 11195-11205.	3 . 5	49
12	Comparison of the Association Level of a Pyrene-Labeled Associative Polymer Obtained from an Analysis Based on Two Different Models. Journal of Physical Chemistry B, 2005, 109, 1770-1780.	2.6	48
13	Fluorescence Resonance Energy Transfer in Partially and Fully Labeled Pyrene Dendronized Porphyrins Studied with Model Free Analysis. Journal of Physical Chemistry C, 2014, 118, 8280-8294.	3.1	47
14	Characterization of the Association Level of Pyrene-Labeled HASEs by Fluorescence. Macromolecules, 2001, 34, 7876-7884.	4.8	46
15	Effect of Solvent Quality on the Level of Association and Encounter Kinetics of Hydrophobic Pendants Covalently Attached onto a Water-Soluble Polymer. Macromolecules, 2002, 35, 8560-8570.	4.8	45
16	Coilâ~Globule Transition of Pyrene-Labeled Polystyrene in Cyclohexane:  Determination of Polymer Chain Radii by Fluorescence. Journal of Physical Chemistry B, 2004, 108, 12009-12015.	2.6	44
17	Probing End-to-End Cyclization beyond Willemski and Fixman. Journal of Physical Chemistry B, 2011, 115, 3289-3302.	2.6	44
18	A Study of the Dynamics of the Branch Ends of a Series of Pyrene-Labeled Dendrimers Based on Pyrene Excimer Formation. Journal of Physical Chemistry B, 2010, 114, 10254-10265.	2.6	42

#	Article	IF	CITATIONS
19	Scaling Relations Related to the Kinetics of Excimer Formation between Pyrene Groups Attached onto Poly(N,N-dimethylacrylamide)s. Macromolecules, 2002, 35, 8571-8577.	4.8	40
20	A Case for Using Randomly Labeled Polymers to Study Long-Range Polymer Chain Dynamics by Fluorescence. Journal of the American Chemical Society, 2008, 130, 9420-9428.	13.7	39
21	Long-Range Polymer Chain Dynamics of Pyrene-Labeled Poly(<i>N</i> -isopropylacrylamide)s Studied by Fluorescence. Macromolecules, 2011, 44, 5363-5372.	4.8	35
22	Effect of Side-Chain Length on the Polymer Chain Dynamics of Poly(alkyl methacrylate)s in Solution. Macromolecules, 2013, 46, 9738-9747.	4.8	35
23	Associations between a Pyrene-Labeled Hydrophobically Modified Alkali Swellable Emulsion Copolymer and Sodium Dodecyl Sulfate Probed by Fluorescence, Surface Tension, and Viscometry. Macromolecules, 2006, 39, 1144-1155.	4.8	34
24	Global Analysis of the Fluorescence Decays of a Pyrene-Labeled Polymer Using a Blob Model. Macromolecules, 2004, 37, 9287-9289.	4.8	33
25	Characterization of the Behavior of a Pyrene Substituted Gemini Surfactant in Water by Fluorescence. Langmuir, 2011, 27, 3361-3371.	3.5	33
26	Probing Side Chain Dynamics of Branched Macromolecules by Pyrene Excimer Fluorescence. Macromolecules, 2016, 49, 353-361.	4.8	33
27	Correlating Pyrene Excimer Formation with Polymer Chain Dynamics in Solution. Possibilities and Limitations. Macromolecules, 2007, 40, 6647-6657.	4.8	32
28	Characterization by Fluorescence of the Distribution of Maleic Anhydride Grafted onto Ethylenea Propylene Copolymers. Macromolecules, 2004, 37, 1877-1890.	4.8	30
29	Rigid Interior of Styreneâ^Maleic Anhydride Copolymer Aggregates Probed by Fluorescence Spectroscopy. Langmuir, 2002, 18, 3829-3835.	3.5	29
30	Characterization of the Aggregates Made by Short Poly(ethylene oxide) Chains Labeled at One End with Pyrene. Macromolecules, 2005, 38, 2865-2875.	4.8	29
31	Monitoring the Hydrophobic Interactions of Internally Pyrene-Labeled Poly(ethylene oxide)s in Water by Fluorescence Spectroscopy. Macromolecules, 1998, 31, 9193-9200.	4.8	28
32	Effect of Side-chain Length on the Side-chain Dynamics of \hat{l}_{\pm} -Helical Poly($<$ scp> $>$ l $<$ /scp>-glutamic acid) as Probed by a Fluorescence Blob Model. Journal of Physical Chemistry B, 2008, 112, 9209-9218.	2.6	28
33	Effect of Polypeptide Sequence on Polypeptide Self-Assembly. Langmuir, 2011, 27, 6639-6650.	3. 5	28
34	Long Range Polymer Chain Dynamics Studied by Fluorescence Quenching. Macromolecules, 2016, 49, 6149-6162.	4.8	28
35	Applications of Pyrene Fluorescence to the Characterization of Hydrophobically Modified Starch Nanoparticles. Langmuir, 2018, 34, 8611-8621.	3.5	28
36	A blob model to study polymer chain dynamics in solution. The Journal of Physical Chemistry, 1993, 97, 13708-13712.	2.9	27

#	Article	IF	CITATIONS
37	Pyrene Excimer Fluorescence as a Direct and Easy Experimental Means To Characterize the Length Scale and Internal Dynamics of Polypeptide Foldons. Macromolecules, 2018, 51, 3450-3457.	4.8	27
38	Quantifying the Presence of Unwanted Fluorescent Species in the Study of Pyrene-Labeled Macromolecules. Journal of Physical Chemistry B, 2011, 115, 9921-9929.	2.6	24
39	Study of a Polymeric Network by Dynamic Fluorescence Quenching Using a Blob Model. Macromolecules, 1999, 32, 2845-2854.	4.8	23
40	The Importance of Considering Nonfluorescent Pyrene Aggregates for the Study of Pyrene-Labeled Associative Thickeners by Fluorescence. Macromolecules, 2005, 38, 7184-7186.	4.8	23
41	How switching the substituent of a pyrene derivative from a methyl to a butyl affects the fluorescence response of polystyrene randomly labeled with pyrene. Canadian Journal of Chemistry, 2010, 88, 217-227.	1.1	23
42	Molar Absorbance Coefficient of Pyrene Aggregates in Water Generated by a Poly(ethylene oxide) Capped at a Single End with Pyrene. Journal of Physical Chemistry B, 2012, 116, 1226-1233.	2.6	22
43	Pyrenyl Derivative with a Four-Atom Linker That Can Probe the Local Polarity of Pyrene-Labeled Macromolecules. Journal of Physical Chemistry B, 2016, 120, 834-842.	2.6	21
44	Extraction of Oil from Oil Sands Using Thermoresponsive Polymeric Surfactants. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5879-5889.	8.0	20
45	Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. Biophysical Journal, 2016, 111, 1267-1277.	0.5	20
46	Study of the Semidilute Solutions of Poly(N,N-dimethylacrylamide) by Fluorescence and Its Implications to the Kinetics of Coil-to-Globule Transitions. Journal of Physical Chemistry B, 2006, 110, 2628-2637.	2.6	19
47	Chemical Modification of Polyisobutylene Succinimide Dispersants and Characterization of Their Associative Properties. Journal of Physical Chemistry B, 2015, 119, 12202-12211.	2.6	18
48	Surfactant Structure-Dependent Interactions with Modified Starch Nanoparticles Probed by Fluorescence Spectroscopy. Langmuir, 2019, 35, 3432-3444.	3.5	18
49	Maleated Ethylene-Propylene Random Copolymers:Â Determination of the Microstructure and Association Level by Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2001, 105, 4827-4839.	2.6	17
50	Studying Pyrene-Labeled Macromolecules with the Model-Free Analysis. Journal of Physical Chemistry B, 2012, 116, 14689-14699.	2.6	17
51	Conformation of Pyrene-Labeled Amylose in DMSO Characterized with the Fluorescence Blob Model. Macromolecules, 2016, 49, 7965-7974.	4.8	17
52	Fluorescence Properties of Poly(ethylene terephthalate-co-2,6-naphthalene dicarboxylate) with Naphthalene Contents Ranging from 0.01 to 100 mol. Macromolecules, 1999, 32, 2956-2961.	4.8	16
53	Maleic Anhydride Modified Oligo(isobutylene):Â Effect of Hydrogen Bonding on Its Associative Strength in Hexane Characterized by Fluorescence Spectroscopy. Macromolecules, 2001, 34, 1454-1469.	4.8	16
54	Interaction of a Self-Assembling Peptide with Oligonucleotides: Complexation and Aggregation. Biophysical Journal, 2007, 93, 2477-2490.	0.5	16

#	Article	IF	Citations
55	Fluorescence studies of a series of monodisperse telechelic \hat{l}_{\pm} , \hat{l}_{∞} -dipyrenyl poly(N-isopropylacrylamide)s in ethanol and in water. Canadian Journal of Chemistry, 2011, 89, 163-172.	1.1	16
56	Comparison of the long range polymer chain dynamics of polystyrene and cis-polyisoprene using polymers randomly labeled with pyrene. Polymer, 2009, 50, 5456-5466.	3.8	15
57	Interactions between a Series of Pyrene End-Labeled Poly(ethylene oxide)s and Sodium Dodecyl Sulfate in Aqueous Solution Probed by Fluorescence. Langmuir, 2014, 30, 13164-13175.	3.5	15
58	Characterization of the Long-Range Internal Dynamics of Pyrene-Labeled Macromolecules by Pyrene Excimer Fluorescence. Macromolecules, 2016, 49, 9597-9604.	4.8	15
59	Study of the Microcrystallization of Ethyleneâ^^Propylene Random Copolymers in Solution by Fluorescence. Macromolecules, 2007, 40, 661-669.	4.8	14
60	Effect of Sequence on the Ionization Behavior of a Series of Amphiphilic Polypeptides. Langmuir, 2013, 29, 4451-4459.	3.5	14
61	Hydrophobic and Elastic Forces Experienced by a Series of Pyrene End-Labeled Poly(ethylene oxide)s Interacting with Sodium Dodecyl Sulfate Micelles. Macromolecules, 2018, 51, 5933-5943.	4.8	14
62	Diffusion reaction in restricted spaces of spherical symmetry: Surface quenching of luminescence. Journal of Chemical Physics, 1992, 97, 1554-1561.	3.0	13
63	Effect of Time on the Rate of Long Range Polymer Segmental Intramolecular Encounters. Journal of Physical Chemistry B, 2009, 113, 2284-2292.	2.6	13
64	Using Pyrene Excimer Fluorescence To Probe Polymer Diffusion in Latex Films. Macromolecules, 2017, 50, 1635-1644.	4.8	13
65	Interactions between Hydrophobically Modified Alkali-Swellable Emulsion Polymers and Sodium Dodecyl Sulfate Probed by Fluorescence and Rheology. Journal of Physical Chemistry B, 2014, 118, 351-361.	2.6	12
66	DiPyMe in SDS Micelles: Artifacts and Their Implications in the Interpretation of Micellar Properties. Langmuir, 2015, 31, 11971-11981.	3.5	12
67	Quantitative Characterization of the Molecular Dimensions of Flexible Dendritic Macromolecules in Solution by Pyrene Excimer Fluorescence. Macromolecules, 2018, 51, 1586-1590.	4.8	12
68	Arborescent Poly(<scp>l</scp> -glutamic acid)s as Standards To Study the Dense Interior of Polypeptide Mesoglobules by Pyrene Excimer Fluorescence. Macromolecules, 2018, 51, 7914-7923.	4.8	12
69	Effect of Viscosity on Long-Range Polymer Chain Dynamics in Solution Studied with a Fluorescence Blob Model. Macromolecules, 2009, 42, 1244-1251.	4.8	11
70	Effect of Structure on Polypeptide Blobs: A Model Study Using Poly(<scp>l</scp> -lysine). Langmuir, 2020, 36, 7980-7990.	3.5	11
71	Effect of Like Charges on the Conformation and Internal Dynamics of Polypeptides Probed by Pyrene Excimer Fluorescence. Macromolecules, 2020, 53, 5147-5157.	4.8	11
72	Characterization of the Distribution of Pyrene Molecules in Confined Geometries with the Model Free Analysis. Journal of Physical Chemistry B, 2017, 121, 11325-11332.	2.6	10

#	Article	IF	CITATIONS
73	Long Range Polymer Chain Dynamics of Highly Flexible Polysiloxane in Solution Probed by Pyrene Excimer Fluorescence. Polymers, 2018, 10, 345.	4.5	10
74	Detection of Nitroaromatics by Pyrene-Labeled Starch Nanoparticles. Langmuir, 2019, 35, 13145-13156.	3.5	10
75	Characterization of the ground state pyrene complex in ethylene-propylene copolymer solutions. Journal of Polymer Science, Part B: Polymer Physics, 1995, 33, 1173-1181.	2.1	9
76	Blob Model Analysis of the pH-Induced Fluorescence Quenching of Two Anthracene-Labeled Poly(2-vinylpyridine)s. Macromolecules, 2004, 37, 1987-1989.	4.8	9
77	Effect of Solvent Quality toward the Association of Succinimide Pendants of a Modified Ethyleneâ^'Propylene Copolymer in Mixtures of Toluene and Hexane. Macromolecules, 2005, 38, 4438-4446.	4.8	9
78	New approaches to characterize polymeric oil additives in solution based on pyrene excimer fluorescence. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 7-18.	2.1	9
79	Temperature response of aqueous solutions of pyrene endâ€labeled poly(<i>N</i> à€isopropylacrylamide)s probed by steadyâ€state and timeâ€resolved fluorescence. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 308-318.	2.1	9
80	Direct Measure of the Local Concentration of Pyrenyl Groups in Pyrene-Labeled Dendrons Derived from the Rate of Fluorescence Collisional Quenching. Polymers, 2020, 12, 2919.	4.5	9
81	Quantifying the Level of Intermacromolecular Interactions in Ethylene–Propylene Copolymers by Using Pyrene Excimer Formation. Macromolecules, 2015, 48, 4620-4630.	4.8	8
82	Using Pyrene Excimer Fluorescence To Probe the Interactions between Viscosity Index Improvers and Waxes Present in Automotive Oil. Macromolecules, 2017, 50, 2467-2476.	4.8	8
83	Blob-Based Approach to Estimate the Folding Time of Proteins Supported by Pyrene Excimer Fluorescence Experiments. Macromolecules, 2020, 53, 9823-9835.	4.8	8
84	Blob-Based Predictions of Protein Folding Times from the Amino Acid-Dependent Conformation of Polypeptides in Solution. Macromolecules, 2021, 54, 919-929.	4.8	8
85	Determination of the Aggregation Number of Pyrene-Labeled Gemini Surfactant Micelles by Pyrene Fluorescence Quenching Measurements. Langmuir, 2021, 37, 6069-6079.	3.5	8
86	Long-Range, Polymer Chain Dynamics of a "Stiff―Polymer. Fluorescence from Poly(isobutylene- <i>alt</i> maleic anhydride) with <i>N</i> -(1-Pyrenylmethyl)succinimide Groups. Macromolecules, 2017, 50, 3396-3403.	4.8	7
87	Study of maleated ethylene–propylene copolymers by fluorescence: Evidence for succinimide induced polar associations in an apolar solvent. European Polymer Journal, 2008, 44, 3005-3014.	5.4	6
88	The Effect of Amino Acid Size on the Internal Dynamics and Conformational Freedom of Polypeptides. Macromolecules, 2020, 53, 9811-9822.	4.8	6
89	Pyrene Excimer Formation (PEF) and Its Application to the Study of Polypeptide Dynamics. Langmuir, 2022, 38, 3623-3629.	3.5	6
90	Application of Time-Resolved Fluorescence Anisotropy To Probe Quinoline-Based Foldamers Labeled with Oligo(phenylene vinylene). Macromolecules, 2019, 52, 5829-5837.	4.8	5

#	Article	IF	Citations
91	Probing the Interactions between Mimics of Pour Point Depressants (PPDs) and Viscosity Index Improvers (VIIs) in Engine Oil Using Fluorescently Labeled PPDs. Macromolecules, 2019, 52, 2651-2658.	4.8	5
92	A Pyrene Excimer Fluorescence (PEF) Study of the Interior of Amylopectin in Dilute Solution. Macromolecules, 2020, 53, 6850-6860.	4.8	5
93	Assemblies of Hydrophobically Modified Starch Nanoparticles Probed by Surface Tension and Pyrene Fluorescence. ACS Symposium Series, 2020, , 61-75.	0.5	5
94	Characterization of the Local Volume Probed by the Side-Chain Ends of Poly(oligo(ethylene glycol)) Tj ETQq0 0 0 Macromolecules, 2021, 54, 9341-9350.) rgBT /Ove 4.8	erlock 10 Tf 5 5
95	Lateral Distribution of Charged Species along a Polyelectrolyte Probed with a Fluorescence Blob Model. Journal of the American Chemical Society, 2012, 134, 16791-16797.	13.7	4
96	Design, characterization, optical and photophysical properties of novel thiophene monomers and polymers containing pyrene moieties linked via rigid and flexible spacers. Synthetic Metals, 2019, 248, 102-109.	3.9	4
97	Effects of Glycine on the Local Conformation and Internal Backbone Dynamics of Polypeptides. Macromolecules, 2021, 54, 8904-8912.	4.8	4
98	Electron Transfer between Physically Bound Electron Donors and Acceptors: A Fluorescence Blob Model Approach. Journal of Physical Chemistry B, 2010, 114, 13950-13960.	2.6	3
99	Simplification in the Acquisition and Analysis of Fluorescence Decays Acquired with Polarized Emission for Time-Resolved Fluorescence Anisotropy Measurements. Analytical Chemistry, 2020, 92, 668-673.	6.5	3
100	Interior of Amylopectin and Nano-Sized Amylopectin Fragments Probed by Viscometry, Dynamic Light Scattering, and Pyrene Excimer Fluorescence. Polymers, 2020, 12, 2649.	4.5	3
101	Synthesis and Characterization of a Pyrene-Labeled Gemini Surfactant Sensitive to the Polarity of Its Environment. Langmuir, 2021, 37, 13824-13837.	3.5	3
102	Temperature-Controlled Interactions between Poly(N-isopropylacrylamide) Mesoglobules Probed by Fluorescence. Macromolecules, 2018, 51, 1946-1956.	4.8	2
103	Characterization of the Interactions between an Unassociated Cationic Pyrene-Labeled Gemini Surfactant and Anionic Sodium Dodecyl Sulfate. Langmuir, 2022, 38, 7484-7495.	3.5	2
104	Unfolding of Helical Poly(L-Glutamic Acid) in N,N-Dimethylformamide Probed by Pyrene Excimer Fluorescence (PEF). Polymers, 2021, 13, 1690.	4.5	1
105	Pyrene-Labeled Water-Soluble Macromolecules as Fluorescent Mimics of Associative Thickeners. Springer Series on Fluorescence, 2016, , 217-253.	0.8	1
106	Probing the Interactions between Pour Point Depressants (PPDs), Viscosity Index Improvers (VIIs), and Wax in Octane Using Fluorescently Labeled PPDs. Canadian Journal of Chemistry, 0, , .	1.1	0