
Kong-Wei Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6020254/publications.pdf Version: 2024-02-01

KONG-WELCHENG

#	Article	IF	CITATIONS
1	Copper zinc tin sulfide as a catalytic material for counter electrodes in dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 562-569.	10.3	77
2	Photoelectrochemical properties of AgInS2 thin films prepared using electrodeposition. Solar Energy Materials and Solar Cells, 2011, 95, 453-461.	6.2	57
3	Effect of Ni on the growth and photoelectrochemical properties of ZnS thin films. Materials Chemistry and Physics, 2009, 117, 156-162.	4.0	53
4	Photo-enhanced salt-water splitting using orthorhombic Ag8SnS6 photoelectrodes in photoelectrochemical cells. Journal of Power Sources, 2016, 317, 81-92.	7.8	41
5	Ternary Ag–In–S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications. Materials Chemistry and Physics, 2010, 120, 307-312.	4.0	40
6	Photoelectrochemical performances of AgInS2 film electrodes fabricated using the sulfurization of Ag–In metal precursors. Solar Energy Materials and Solar Cells, 2011, 95, 1859-1866.	6.2	38
7	Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process. Solar Energy Materials and Solar Cells, 2012, 96, 33-42.	6.2	35
8	Physical properties of AgIn5S8 polycrystalline films fabricated by solution growth technique. Materials Chemistry and Physics, 2008, 108, 16-23.	4.0	34
9	Preparation of Zn–In–S film electrodes using chemical bath deposition for photoelectrochemical applications. Solar Energy Materials and Solar Cells, 2010, 94, 1137-1145.	6.2	34
10	Preparation and characterizations of visible light-responsive (Ag–In–Zn)S thin-film electrode by chemical bath deposition. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40, 180-187.	5.3	33
11	Preparation of the Ag–Zn–Sn–S quaternary photoelectrodes using chemical bath deposition for photoelectrochemical applications. Thin Solid Films, 2014, 558, 289-293.	1.8	33
12	Photoelectrochemical performance of Cu-doped ZnIn2S4 electrodes created using chemical bath deposition. Solar Energy Materials and Solar Cells, 2011, 95, 1940-1948.	6.2	31
13	The physical properties and photoresponse of AgIn5S8 polycrystalline film electrodes fabricated by chemical bath deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 77-87.	3.9	30
14	Physical properties and photoresponse of Cu–Ag–In–S semiconductor electrodes created using chemical bath deposition. Solar Energy Materials and Solar Cells, 2009, 93, 1427-1434.	6.2	30
15	Ternary CuInS2 photoelectrodes created using the sulfurization of Cu–In metal precursors for photoelectrochemical applications. Materials Research Bulletin, 2013, 48, 2457-2468.	5.2	28
16	Effect of [Cu]/[Cu+In] ratio in the solution bath on the growth and physical properties of CuInS2 film using one-step electrodeposition. Journal of Electroanalytical Chemistry, 2011, 661, 57-65.	3.8	23
17	Effects of complex agents on the physical properties of Ag–In–S ternary semiconductor films using chemical bath deposition. Materials Chemistry and Physics, 2009, 115, 14-20.	4.0	22
18	Photoelectrochemical salt water splitting using ternary silver–tin–selenide photoelectrodes. Journal of Power Sources, 2016, 307, 329-339.	7.8	22

Kong-Wei Cheng

#	Article	IF	CITATIONS
19	Influence of chelating agents on the growth and photoelectrochemical responses of chemical bath-synthesized AgIn5S8 film electrodes. Solar Energy Materials and Solar Cells, 2009, 93, 307-314.	6.2	21
20	Preparation of chemical bath synthesized ternary Ag–Sn–S thin films as the photoelectrodes in photoelectrodes in photoelectrochemical cell. Journal of Power Sources, 2015, 275, 750-759.	7.8	21
21	Ternary AgInSe2 film electrode created using selenization of RF magnetron sputtered Ag–In metal precursor for photoelectrochemical applications. International Journal of Hydrogen Energy, 2012, 37, 13638-13644.	7.1	20
22	Influences of Silver and Zinc Contents in the Stannite Ag ₂ ZnSnS ₄ Photoelectrodes on Their Photoelectrochemical Performances in the Saltwater Solution. ACS Applied Materials & Interfaces, 2018, 10, 22130-22142.	8.0	19
23	Photoelectrochemical water splitting using Cu(In,Al)Se2 photoelectrodes developed via selenization of sputtered Cu–In–Al metal precursors. Solar Energy Materials and Solar Cells, 2016, 151, 120-130.	6.2	18
24	Stable photoelectrochemical salt-water splitting using the n-ZnSe/n-Ag 8 SnS 6 photoanodes with the nanoscale surface state capacitances. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 182-195.	5.3	17
25	Photoelectrochemical performances of kesterite Ag 2 ZnSnSe 4 photoelectrodes in the salt-water and water solutions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 199-208.	5.3	16
26	Photoelectrochemical performance of Cu–Zn–In–S film grown using one-step electrodeposition. Electrochimica Acta, 2013, 87, 53-62.	5.2	15
27	Reorientation of Magnetic Graphene Oxide Nanosheets in Crosslinked Quaternized Polyvinyl Alcohol as Effective Solid Electrolyte. Energies, 2016, 9, 1003.	3.1	15
28	Antibacterial Application on Staphylococcus aureus Using Antibiotic Agent/Zinc Oxide Nanorod Arrays/Polyethylethylketone Composite Samples. Nanomaterials, 2019, 9, 713.	4.1	15
29	Growth and characterization of CuInS2 nanoparticles prepared using sonochemical synthesis. Journal of the Taiwan Institute of Chemical Engineers, 2015, 48, 87-94.	5.3	14
30	Long-term antibacterial performances of biodegradable polylactic acid materials with direct absorption of antibiotic agents. RSC Advances, 2018, 8, 16223-16231.	3.6	12
31	Catalytic and photoelectrochemical performances of Cu–Zn–Sn–Se thin films prepared using selenization of electrodeposited Cu–Zn–Sn metal precursors. Journal of Power Sources, 2015, 286, 47-57.	7.8	11
32	Surface modification of the p-type Cu2ZnSnS4 photocathode with n-type zinc oxide nanorods for photo-driven salt water splitting. International Journal of Hydrogen Energy, 2021, 46, 26961-26975.	7.1	11
33	Photoelectrochemical performance of aluminum-doped AgIn5S8 electrodes created using chemical bath deposition. Thin Solid Films, 2011, 520, 469-474.	1.8	10
34	Chemical synthesis of orthorhombic Ag8SnS6/zinc oxide nanorods photoanodes for photoelectrochemical salt-water splitting. Journal of Materials Science: Materials in Electronics, 2021, 32, 10532-10548.	2.2	10
35	The photoelectrochemical performances of Sb-doped AgIn5S8 film electrodes prepared by chemical bath deposition. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 107-114.	3.9	9
36	Preparation and Characterization for Antibacterial Activities of 3D Printing Polyetheretherketone Disks Coated with Various Ratios of Ampicillin and Vancomycin Salts. Applied Sciences (Switzerland), 2020, 10, 97.	2.5	9

Kong-Wei Cheng

#	Article	IF	CITATIONS
37	Preparation and characterization of CulnxAl1â^xS2 films using the sulfurization of metal precursors for photoelectrochemical applications. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 407-414.	5.3	8
38	Antibacterial Activity Studies of 3D-Printing Polyetheretherketone Substrates with Surface Growth of 2D TiO ₂ /ZnO Rodlike Arrays. ACS Omega, 2022, 7, 9559-9572.	3.5	6
39	Preparation and photoelectrochemical applications of chemically synthesized Sb-doped p-AgIn5S8 film electrodes. Physica B: Condensed Matter, 2009, 404, 1264-1270.	2.7	5
40	Effect of Sb on the growth and photoelectrochemical response of AgIn5S8 film electrodes created by solution growth technique. Chemical Engineering Science, 2010, 65, 74-79.	3.8	5
41	Modification of Ag8SnS6 Photoanodes with Incorporation of Zn Ions for Photo-Driven Hydrogen Production. Catalysts, 2021, 11, 363.	3.5	5
42	Influence of [Cu]/[Cu+Sn] molar ratios in p-type Cu–Sn–S photoelectrodes on their photoelectrochemical performances in water and salt–water solutions. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 209-219.	5.3	4
43	Solution-growth-synthesized Cu(In,Ca)Se 2 nanoparticles in ethanol bath for the applications of dye-sensitized solar cell and photoelectrochemical reaction. Journal of the Taiwan Institute of Chemical Engineers, 2017, 74, 136-145.	5.3	4
44	Influence of gallium on the growth and photoelectrochemical performances of AgIn5S8 photoelectrodes. Thin Solid Films, 2012, 524, 238-244.	1.8	3
45	Photoelectrochemical performances of the cubic AgSnSe2 thin film electrodes created using the selenization of thermal evaporated Ag-Sn metal precursors. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 56-65.	5.3	2
46	Photoelectrochemical study of AgInS <inf>2</inf> thin films prepared using sulfurization of evaporated Metal Precursors. , 2010, , .		0
47	Photoelectrochemical response for Cu-doped ZnIn <inf>2</inf> S <inf>4</inf> electrode created using chemical bath deposition. , 2010, , .		0
48	Chemical synthesis of ternary silver–indium selenide (AgInSe2) nanopowders in ethanol bath for photoelectrochemical hydrogen production. Materials Science in Semiconductor Processing, 2022, 143, 106542.	4.0	0