Peter A Kulakow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6020052/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology, 2022, 109, 195-213.	2.0	33
2	From traits to typologies: Piloting new approaches to profiling trait preferences along the cassava value chain in Nigeria. Crop Science, 2022, 62, 259-274.	0.8	6
3	Building Demand-Led and Gender-Responsive Breeding Programs. , 2022, , 483-509.		14
4	Turning Waste to Wealth: Harnessing the Potential of Cassava Peels for Nutritious Animal Feed. , 2022, , 173-206.		3
5	Breedbase: a digital ecosystem for modern plant breeding. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	17
6	Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS ONE, 2022, 17, e0268189.	1.1	14
7	Understanding cassava varietal preferences through pairwise ranking of <i>gariâ€eba</i> and <i>fufu</i> prepared by local farmer–processors. International Journal of Food Science and Technology, 2021, 56, 1258-1277.	1.3	31
8	Conversion and Validation of Uniplex SNP Markers for Selection of Resistance to Cassava Mosaic Disease in Cassava Breeding Programs. Agronomy, 2021, 11, 420.	1.3	10
9	Portable Spectroscopy Calibration with Inexpensive and Simple Sampling Reference Alternatives for Dry Matter and Total Carotenoid Contents in Cassava Roots. Applied Sciences (Switzerland), 2021, 11, 1714.	1.3	4
10	New cassava germplasm for food and nutritional security in Central Africa. Scientific Reports, 2021, 11, 7394.	1.6	16
11	Flower Development in Cassava Is Feminized by Cytokinin, While Proliferation Is Stimulated by Anti-Ethylene and Pruning: Transcriptome Responses. Frontiers in Plant Science, 2021, 12, 666266.	1.7	12
12	Effectiveness of genomic selection for improving provitamin A carotenoid content and associated traits in cassava. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	9
13	ldentifying New Resistance to Cassava Mosaic Disease and Validating Markers for the CMD2 Locus. Agriculture (Switzerland), 2021, 11, 829.	1.4	8
14	Genetic Analysis of Yield and Quality Characteristics in Provitamin A Hybrid Cassava Families in Ghana. Agronomy, 2021, 11, 1911.	1.3	0
15	Genomic mating in outbred species: predicting cross usefulness with additive and total genetic covariance matrices. Genetics, 2021, 219, .	1.2	13
16	Prediction of Root Biomass in Cassava Based on Ground Penetrating Radar Phenomics. Remote Sensing, 2021, 13, 4908.	1.8	7
17	Beyond "Women's Traits― Exploring How Gender, Social Difference, and Household Characteristics Influence Trait Preferences. Frontiers in Sustainable Food Systems, 2021, 5, .	1.8	13
18	Genetic characterization of cassava (Manihot esculenta Crantz) genotypes using agro-morphological and single nucleotide polymorphism markers. Physiology and Molecular Biology of Plants, 2020, 26, 317-330.	1.4	14

Peter A Kulakow

#	Article	IF	CITATIONS
19	Popular Biofortified Cassava Cultivars Are Heavily Impacted by Plant Parasitic Nematodes, Especially Meloidogyne Spp Plants, 2020, 9, 802.	1.6	2
20	Combining Ability and Genetic Components of Yield Characteristics, Dry Matter Content, and Total Carotenoids in Provitamin A Cassava F1 Cross-Progeny. Agronomy, 2020, 10, 1850.	1.3	4
21	Improving root characterisation for genomic prediction in cassava. Scientific Reports, 2020, 10, 8003.	1.6	15
22	Identification of additional /novel QTL associated with resistance to cassava green mite in a biparental mapping population. PLoS ONE, 2020, 15, e0231008.	1.1	10
23	Technological Innovations for Improving Cassava Production in Sub-Saharan Africa. Frontiers in Genetics, 2020, 11, 623736.	1.1	30
24	A global overview of cassava genetic diversity. PLoS ONE, 2019, 14, e0224763.	1.1	39
25	Gender-based constraints affecting biofortified cassava production, processing and marketing among men and women adopters in Oyo and Benue States, Nigeria. Physiological and Molecular Plant Pathology, 2019, 105, 17-27.	1.3	19
26	Historical Introgressions from a Wild Relative of Modern Cassava Improved Important Traits and May Be Under Balancing Selection. Genetics, 2019, 213, 1237-1253.	1.2	27
27	Improving Genomic Prediction in Cassava Field Experiments by Accounting for Interplot Competition. G3: Genes, Genomes, Genetics, 2018, 8, 933-944.	0.8	4
28	Improving Genomic Prediction in Cassava Field Experiments Using Spatial Analysis. G3: Genes, Genomes, Genetics, 2018, 8, 53-62.	0.8	20
29	Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. Plant Genome, 2018, 11, 170050.	1.6	10
30	Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3: Genes, Genomes, Genetics, 2018, 8, 3903-3913.	0.8	23
31	Cassava Trait Preferences of Men and Women Farmers in Nigeria: Implications for Breeding. Economic Botany, 2018, 72, 263-277.	0.8	85
32	Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava (Manihot esculenta Crantz). Molecular Breeding, 2017, 37, 1.	1.0	15
33	Accuracies of univariate and multivariate genomic prediction models in African cassava. Genetics Selection Evolution, 2017, 49, 88.	1.2	54
34	Genomeâ€Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. Plant Genome, 2017, 10, plantgenome2016.09.0094.	1.6	63
35	Prospects for Genomic Selection in Cassava Breeding. Plant Genome, 2017, 10, plantgenome2017.03.0015.	1.6	101
36	Marker-Based Estimates Reveal Significant Nonadditive Effects in Clonally Propagated Cassava (<i>Manihot esculenta</i>): Implications for the Prediction of Total Genetic Value and the Selection of Varieties. G3: Genes, Genomes, Genetics, 2016, 6, 3497-3506.	0.8	34

#	Article	IF	CITATIONS
37	Genomeâ€Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome, 2016, 9, plantgenome2015.11.0118.	1.6	120
38	Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nature Biotechnology, 2016, 34, 562-570.	9.4	340
39	Genetic Variation of Postharvest Physiological Deterioration Susceptibility in a Cassava Germplasm. Crop Science, 2015, 55, 2701-2711.	0.8	7
40	Tracking crop varieties using genotyping-by-sequencing markers: a case study using cassava (Manihot) Tj ETQqO	0 0 rgBT / 2.7	Overlock 10 ⁻
41	Technical innovations for small-scale producers and households to process wet cassava peels into high quality animal feed ingredients and aflasafeâ,,¢ substrate. Food Chain, 2015, 5, 71-90.	0.4	13
42	solGS: a web-based tool for genomic selection. BMC Bioinformatics, 2014, 15, 398.	1.2	18
43	High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Research, 2014, 186, 87-96.	1.1	143
44	A global alliance declaring war on cassava viruses in Africa. Food Security, 2014, 6, 231-248.	2.4	81
45	Genetic Mapping Using Genotypingâ€by‣equencing in the Clonally Propagated Cassava. Crop Science, 2014, 54, 1384-1396.	0.8	50
46	Relatedness and Genotype × Environment Interaction Affect Prediction Accuracies in Genomic Selection: A Study in Cassava. Crop Science, 2013, 53, 1312-1325.	0.8	102
47	Genotype × Environment Interaction of Mosaic Disease, Root Yields and Total Carotene Concentration of Yellow-Fleshed Cassava in Nigeria. International Journal of Agronomy, 2012, 2012, 1-8.	0.5	14
48	Information Resources for Cassava Research and Breeding. Tropical Plant Biology, 2012, 5, 140-151.	1.0	10
49	Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Tropical Plant Biology, 2012, 5, 73-87.	1.0	60
50	Potential for Plant-Based Remediation of Pesticide-Contaminated Soil and Water using Nontarget Plants such as Trees, Shrubs, and Grasses. Critical Reviews in Plant Sciences, 2004, 23, 91-101.	2.7	47
51	Plant System Technologies for Environmental Management of Metals in Soils: Educational Materials. Journal of Natural Resources and Life Sciences Education, 2002, 31, 31-37.	0.3	9
52	Interspecific hybridization and gene flow of ALS resistance inAmaranthusspecies. Weed Science, 2001, 49, 598-606.	0.8	95
53	Screening Plant Species for Growth on Weathered, Petroleum Hydrocarbon-Contaminated Sediments. International Journal of Phytoremediation, 2000, 2, 297-317.	1.7	55
54	Transferal of herbicide resistance traits fromAmaranthus palmeritoAmaranthus rudis. Weed Science, 1999, 47, 538-543.	0.8	72

#	Article	IF	CITATIONS
55	Title is missing!. , 1999, 110, 7-20.		11
56	Incidence and severity of viral disease symptoms on eastern gamagrass within monoculture and polycultures. Agriculture, Ecosystems and Environment, 1996, 59, 139-147.	2.5	9