
Matthew R Nitschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6019728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revival of <i>Philozoon</i> Geddes for host-specialized dinoflagellates, â€~zooxanthellae', in animals from coastal temperate zones of northern and southern hemispheres. European Journal of Phycology, 2022, 57, 166-180.	0.9	30
2	Toward bioâ€optical phenotyping of reefâ€forming corals using Lightâ€Induced Fluorescence <scp>Transientâ€Fast</scp> Repetition Rate fluorometry. Limnology and Oceanography: Methods, 2022, 20, 172-191.	1.0	17
3	Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integrative and Comparative Biology, 2022, 62, 1700-1709.	0.9	11
4	Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC Plant Biology, 2022, 22, 184.	1.6	9
5	Species-specific elementomes for scleractinian coral hosts and their associated Symbiodiniaceae. Coral Reefs, 2022, 41, 1115-1130.	0.9	5
6	Unlocking the phylogenetic diversity, primary habitats, and abundances of freeâ€living Symbiodiniaceae on a coral reef. Molecular Ecology, 2021, 30, 343-360.	2.0	33
7	An Indo-Pacific coral spawning database. Scientific Data, 2021, 8, 35.	2.4	34
8	Revealing changes in the microbiome of Symbiodiniaceae under thermal stress. Environmental Microbiology, 2020, 22, 1294-1309.	1.8	48
9	Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites. ISME Journal, 2020, 14, 1533-1546.	4.4	14
10	Description of <i>Freudenthalidium</i> gen. nov. and <i>Halluxium</i> gen. nov. to Formally Recognize Clades Fr3 and H as Genera in the Family Symbiodiniaceae (Dinophyceae). Journal of Phycology, 2020, 56, 923-940.	1.0	56
11	Corals exhibit distinct patterns of microbial reorganisation to thrive in an extreme inshore environment. Coral Reefs, 2020, 39, 701-716.	0.9	47
12	Mass coral bleaching of P. versipora in Sydney Harbour driven by the 2015–2016 heatwave. Coral Reefs, 2019, 38, 815-830.	0.9	20
13	Cell Cycle Dynamics of Cultured Coral Endosymbiotic Microalgae (<i>Symbiodinium</i>) Across Different Types (Species) Under Alternate Light and Temperature Conditions. Journal of Eukaryotic Microbiology, 2018, 65, 505-517.	0.8	29
14	Utility of Photochemical Traits as Diagnostics of Thermal Tolerance amongst Great Barrier Reef Corals. Frontiers in Marine Science, 2018, 5, .	1.2	37
15	An LED-based multi-actinic illumination system for the high throughput study of photosynthetic light responses. PeerJ, 2018, 6, e5589.	0.9	10
16	Expanding the <i>Symbiodinium</i> (Dinophyceae, Suessiales) Toolkit Through Protoplast Technology. Journal of Eukaryotic Microbiology, 2017, 64, 588-597.	0.8	24
17	<i>Symbiodinium</i> mitigate the combined effects of hypoxia and acidification on a noncalcifying cnidarian. Global Change Biology, 2017, 23, 3690-3703.	4.2	41
18	Reef-building corals thrive within hot-acidified and deoxygenated waters. Scientific Reports, 2017, 7, 2434.	1.6	91

MATTHEW R NITSCHKE

#	Article	IF	CITATIONS
19	Coral Community Structure and Recruitment in Seagrass Meadows. Frontiers in Marine Science, 2017, 4, .	1.2	14
20	A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biology, 2017, 15, 117.	1.7	45
21	Horizontal transmission of Symbiodinium cells between adult and juvenile corals is aided by benthic sediment. Coral Reefs, 2016, 35, 335-344.	0.9	64
22	Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Marine Biology, 2015, 162, 717-723.	0.7	39
23	The effect of elevated temperature and substrate on free-living Symbiodinium cultures. Coral Reefs, 2015, 34, 161-171.	0.9	37
24	The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. Marine Biology, 2014, 161, 711-724.	0.7	56