Baiyi Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6019477/publications.pdf Version: 2024-02-01

ΒΛΙΥΙ Ι Π

#	Article	IF	CITATIONS
1	Coarse cereals modulating chronic low-grade inflammation: review. Critical Reviews in Food Science and Nutrition, 2023, 63, 9694-9715.	10.3	4
2	Linking phytosterols and oxyphytosterols from food to brain health: origins, effects, and underlying mechanisms. Critical Reviews in Food Science and Nutrition, 2022, 62, 3613-3630.	10.3	18
3	Antioxidant and anticancer potentials of edible flowers: where do we stand?. Critical Reviews in Food Science and Nutrition, 2022, 62, 8589-8645.	10.3	17
4	Atmospheric pressure plasma jet pretreatment to facilitate cassava starch modification with octenyl succinic anhydride. Food Chemistry, 2022, 370, 130922.	8.2	14
5	Effect of starch molecular structure on precision and texture properties of 3D printed products. Food Hydrocolloids, 2022, 125, 107387.	10.7	39
6	Exploration of Osmanthus fragrans Lour.'s composition, nutraceutical functions and applications. Food Chemistry, 2022, 377, 131853.	8.2	18
7	Acteoside, the Main Bioactive Compound in <i>Osmanthus fragrans</i> Flowers, Palliates Experimental Colitis in Mice by Regulating the Gut Microbiota. Journal of Agricultural and Food Chemistry, 2022, 70, 1148-1162.	5.2	14
8	Modulating the digestibility of cassava starch by esterification with phenolic acids. Food Hydrocolloids, 2022, 127, 107432.	10.7	12
9	Contribution of edible flowers to the Mediterranean diet: Phytonutrients, bioactivity evaluation and applications. Food Frontiers, 2022, 3, 592-630.	7.4	15
10	Simultaneous analysis of free phytosterols and phytosterol glycosides in rice bran by SPE/GC–MS. Food Chemistry, 2022, 387, 132742.	8.2	16
11	Dietary cholesterol oxidation products: Perspectives linking food processing and storage with health implications. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 738-779.	11.7	16
12	Impact of photosensitizers and light wavelength on photooxidation of phytosterols in soymilk emulsions. Food Research International, 2022, 158, 111508.	6.2	3
13	Stigmasterol attenuates inflammatory response of microglia via NF-κB and NLRP3 signaling by AMPK activation. Biomedicine and Pharmacotherapy, 2022, 153, 113317.	5.6	29
14	Investigation of the mechanism of casein protein to enhance 3D printing accuracy of cassava starch gel. Carbohydrate Polymers, 2022, 295, 119827.	10.2	28
15	An update on the health benefits promoted by edible flowers and involved mechanisms. Food Chemistry, 2021, 340, 127940.	8.2	54
16	Starch modification with phenolics: methods, physicochemical property alteration, and mechanisms of glycaemic control. Trends in Food Science and Technology, 2021, 111, 12-26.	15.1	45
17	Sterols and Sterol Oxidation Products: Effect of Dietary Intake on Tissue Distribution in ApoE-Deficient Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 11867-11877.	5.2	5
18	Health benefits and phenolic compounds of Moringa oleifera leaves: A comprehensive review. Phytomedicine, 2021, 93, 153771.	5.3	39

Βαιγι Lu

#	Article	IF	CITATIONS
19	Edible flowers as functional raw materials: A review on anti-aging properties. Trends in Food Science and Technology, 2020, 106, 30-47.	15.1	43
20	Natural P-gp inhibitor EGCG improves the acteoside absorption in Caco-2Âcell monolayers and increases the oral bioavailability of acteoside in rats. Food and Chemical Toxicology, 2020, 146, 111827.	3.6	6
21	Therapeutic potential of phenylethanoid glycosides: A systematic review. Medicinal Research Reviews, 2020, 40, 2605-2649.	10.5	80
22	Recent advances in improving stability of food emulsion by plant polysaccharides. Food Research International, 2020, 137, 109376.	6.2	160
23	Peptide Selection for Accurate Targeted Protein Quantification via a Dimethylation High-Resolution Mass Spectrum Strategy with a Peptide Release Kinetic Model. ACS Omega, 2020, 5, 3809-3819.	3.5	9
24	Guidelines for antioxidant assays for food components. Food Frontiers, 2020, 1, 60-69.	7.4	243
25	Phenolic acid profiles of common food and estimated natural intake with different structures and forms in five regions of China. Food Chemistry, 2020, 321, 126675.	8.2	18
26	<i>Food Frontiers</i> : An academically sponsored new journal. Food Frontiers, 2020, 1, 3-5.	7.4	1
27	The effects of phytochemicals on circadian rhythm and related diseases. Critical Reviews in Food Science and Nutrition, 2019, 59, 882-892.	10.3	31
28	Discovery of Keap1â^'Nrf2 smallâ^'molecule inhibitors from phytochemicals based on molecular docking. Food and Chemical Toxicology, 2019, 133, 110758.	3.6	40
29	Photooxidation of phytosterols in oil matrix: Effects of the light, photosensitizers and unsaturation degree of the lipids. Food Chemistry, 2019, 288, 162-169.	8.2	22
30	Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 2019, 276, 538-546.	8.2	71
31	Bioaccessibility and Absorption Mechanism of Phenylethanoid Glycosides Using Simulated Digestion/Caco-2 Intestinal Cell Models. Journal of Agricultural and Food Chemistry, 2018, 66, 4630-4637.	5.2	37
32	Phytosterol Profiles of Common Foods and Estimated Natural Intake of Different Structures and Forms in China. Journal of Agricultural and Food Chemistry, 2018, 66, 2669-2676.	5.2	46
33	Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocolloids, 2018, 83, 17-24.	10.7	112
34	Structure–activity relationships between sterols and their thermal stability in oil matrix. Food Chemistry, 2018, 258, 387-392.	8.2	10
35	Risk assessment of dietary exposure to phytosterol oxidation products from baked food in China. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 200-210.	2.3	10
36	How do oxyphytosterols affect human health?. Trends in Food Science and Technology, 2018, 79, 148-159.	15.1	21

Baiyi Lu

#	Article	IF	CITATIONS
37	Neuroprotective Effects of Four Phenylethanoid Glycosides on H2O2-Induced Apoptosis on PC12 Cells via the Nrf2/ARE Pathway. International Journal of Molecular Sciences, 2018, 19, 1135.	4.1	52
38	Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food and Chemical Toxicology, 2018, 119, 6-13.	3.6	78
39	Origin Discrimination of <scp> <i>Osmanthus fragrans </i> </scp> var. <i>thunbergii </i> Flowers using GC–MS and UPLCâ€₱DA Combined with Multivariable Analysis Methods. Phytochemical Analysis, 2017, 28, 305-315.	2.4	7
40	Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds. Scientific Reports, 2017, 7, 46501.	3.3	36
41	Photooxidation of phytochemicals in food and control: a review. Annals of the New York Academy of Sciences, 2017, 1398, 72-82.	3.8	28
42	Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated <i>in vitro</i> digestion–dialysis process combined with cellular assays. Journal of the Science of Food and Agriculture, 2017, 97, 4760-4769.	3.5	34
43	Degradation of phenylethanoid glycosides in Osmanthus fragrans Lour. flowers and its effect on anti-hypoxia activity. Scientific Reports, 2017, 7, 10068.	3.3	28
44	Varietal classification and antioxidant activity prediction of Osmanthus fragrans Lour. flowers using UPLC–PDA/QTOF–MS and multivariable analysis. Food Chemistry, 2017, 217, 490-497.	8.2	33
45	The Osmanthus fragrans flower phenylethanoid glycoside-rich extract: Acute and subchronic toxicity studies. Journal of Ethnopharmacology, 2016, 187, 205-212.	4.1	20
46	Effect of Transition Metal lons on the B Ring Oxidation of Sterols and their Kinetics in Oil-in-Water Emulsions. Scientific Reports, 2016, 6, 27240.	3.3	10
47	Phytochemical Content, Health Benefits, and Toxicology of Common Edible Flowers: A Review (2000–2015). Critical Reviews in Food Science and Nutrition, 2016, 56, S130-S148.	10.3	130
48	Phenylethanoid Glycoside Profiles and Antioxidant Activities of <i>Osmanthus fragrans</i> Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model. Journal of Agricultural and Food Chemistry, 2016, 64, 2459-2466.	5.2	32
49	<i>Osmanthus fragrans</i> Flower Extract and Acteoside Protect Against <scp>d</scp> -Galactose-Induced Aging in an ICR Mouse Model. Journal of Medicinal Food, 2016, 19, 54-61.	1.5	52
50	Development and validation of a gas chromatography-mass spectrometry method for determination of sterol oxidation products in edible oils. RSC Advances, 2015, 5, 41259-41268.	3.6	26
51	The effect of traditional stir-frying process on hydrophilic and lipophilic antioxidant capacities of pine nut kernels. International Journal of Food Sciences and Nutrition, 2015, 66, 873-880.	2.8	3
52	Phenolic Compounds and Antioxidant Capacities of 10 Common Edible Flowers from China. Journal of Food Science, 2014, 79, C517-25.	3.1	88
53	Phytochemical contents and antioxidant capacities of different parts of two sugarcane (Saccharum) Tj ETQq1 1	0.784314 8.2	rgBT /Overlo 104
54	Hypolipidemic Effect of Bamboo Shoot Oil (<i>P. pubescens</i>) in Sprague–Dawley Rats. Journal of	3.1	30

Food Science, 2010, 75, H205-11.

3.130

Baiyi Lu

#	Article	IF	CITATIONS
55	Mutagenicity and Safety Evaluation of Ethanolic Extract ofâ€, <i>Prunus mume</i> . Journal of Food Science, 2009, 74, T82-8.	3.1	11
56	Effects of genetic variability, parts and seasons on the sterol content and composition in bamboo shoots. Food Chemistry, 2009, 112, 1016-1021.	8.2	26
57	Simultaneous Determination of Four Water-Soluble Vitamins in Fortified Infant Foods by Ultra-Performance Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry. Journal of Chromatographic Science, 2008, 46, 225-232.	1.4	52
58	Separation and determination of diversiform phytosterols in food materials using supercritical carbon dioxide extraction and ultraperformance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. Analytica Chimica Acta, 2007, 588, 50-63.	5.4	62
59	Toxicology and safety of antioxidant of bamboo leaves. Part 2: Developmental toxicity test in rats with antioxidant of bamboo leaves. Food and Chemical Toxicology, 2006, 44, 1739-1743.	3.6	82
60	Toxicology and safety of anti-oxidant of bamboo leaves. Part 1: Acute and subchronic toxicity studies on anti-oxidant of bamboo leaves. Food and Chemical Toxicology, 2005, 43, 783-792.	3.6	136