Adrian Neild

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018595/publications.pdf

Version: 2024-02-01

76196 88477 6,378 190 40 70 citations h-index g-index papers 194 194 194 5631 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nature Communications, 2015, 6, 8686.	5.8	430
2	The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab on A Chip, 2015, 15, 3439-3459.	3.1	384
3	Visible light positioning: a roadmap for international standardization. , 2013, 51, 68-73.		327
4	Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field. Journal of Microelectromechanical Systems, 2007, 16, 7-15.	1.7	322
5	Position Accuracy of Time-of-Arrival Based Ranging Using Visible Light With Application in Indoor Localization Systems. Journal of Lightwave Technology, 2013, 31, 3302-3308.	2.7	228
6	Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting. Lab on A Chip, 2016, 16, 471-479.	3.1	147
7	Surface acoustic waves for on-demand production of picoliter droplets and particle encapsulation. Lab on A Chip, 2013, 13, 3225.	3.1	141
8	Microfluidic on-demand droplet merging using surface acoustic waves. Lab on A Chip, 2014, 14, 3325-3333.	3.1	129
9	Manipulation of micrometer sized particles within a micromachined fluidic device to form two-dimensional patterns using ultrasound. Journal of the Acoustical Society of America, 2007, 121, 778-785.	0.5	127
10	Particle separation using virtual deterministic lateral displacement (vDLD). Lab on A Chip, 2014, 14, 1595-1603.	3.1	126
11	Acoustic tweezers via sub–time-of-flight regime surface acoustic waves. Science Advances, 2016, 2, e1600089.	4.7	120
12	Selective particle trapping using an oscillating microbubble. Lab on A Chip, 2011, 11, 3710.	3.1	110
13	The importance of travelling wave components in standing surface acoustic wave (SSAW) systems. Lab on A Chip, 2016, 16, 3756-3766.	3.1	102
14	Design, modeling and characterization of microfluidic devices for ultrasonic manipulation. Sensors and Actuators B: Chemical, 2007, 121, 452-461.	4.0	91
15	Positioning, displacement, and localization of cells using ultrasonic forces. Biotechnology and Bioengineering, 2005, 92, 8-14.	1.7	90
16	Separation of particles using acoustic streaming and radiation forces in an open microfluidic channel. Microfluidics and Nanofluidics, 2014, 17, 879-890.	1.0	84
17	Droplet control technologies for microfluidic high throughput screening (νHTS). Lab on A Chip, 2017, 17, 2372-2394.	3.1	82
18	Droplet-based single cell RNAseq tools: a practical guide. Lab on A Chip, 2019, 19, 1706-1727.	3.1	77

#	Article	IF	CITATIONS
19	A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper. Journal of Micromechanics and Microengineering, 2006, 16 , $1562-1570$.	1.5	70
20	The use of acoustic radiation forces to position particles within fluid droplets. Ultrasonics, 2009, 49, 47-52.	2.1	68
21	Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Lab on A Chip, 2015, 15, 4206-4216.	3.1	68
22	Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. IScience, 2021, 24, 102287.	1.9	68
23	Self-Aligned Acoustofluidic Particle Focusing and Patterning in Microfluidic Channels from Channel-Based Acoustic Waveguides. Physical Review Letters, 2018, 120, 074502.	2.9	65
24	Microfluidic mixing under low frequency vibration. Lab on A Chip, 2009, 9, 1435.	3.1	63
25	Shear Assisted Electrochemical Exfoliation of Graphite to Graphene. Langmuir, 2016, 32, 3552-3559.	1.6	59
26	Batch process particle separation using surface acoustic waves (SAW): integration of travelling and standing SAW. RSC Advances, 2016, 6, 5856-5864.	1.7	59
27	The emerging role of microfluidics in multi-material 3D bioprinting. Lab on A Chip, 2020, 20, 2044-2056.	3.1	59
28	Manipulation of cells using an ultrasonic pressure field. Ultrasound in Medicine and Biology, 2005, 31, 857-864.	0.7	56
29	Microfluidic plug steering using surface acoustic waves. Lab on A Chip, 2015, 15, 3030-3038.	3.1	55
30	Ultrafast star-shaped acoustic micromixer for high throughput nanoparticle synthesis. Lab on A Chip, 2020, 20, 582-591.	3.1	55
31	Droplet Bouncing and Breakup during Impact on a Microgrooved Surface. Langmuir, 2017, 33, 9620-9631.	1.6	54
32	Surface acoustic wave diffraction driven mechanisms in microfluidic systems. Lab on A Chip, 2018, 18, 2214-2224.	3.1	54
33	Ultrasensitive Strain Sensor Produced by Direct Patterning of Liquid Crystals of Graphene Oxide on a Flexible Substrate. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22501-22505.	4.0	52
34	Collection of suspended particles in a drop using low frequency vibration. Applied Physics Letters, 2010, 96, .	1.5	51
35	The size dependant behaviour of particles driven by a travelling surface acoustic wave (TSAW). Lab on A Chip, 2018, 18, 3926-3938.	3.1	50
36	Huygens-Fresnel Acoustic Interference and the Development of Robust Time-Averaged Patterns from Traveling Surface Acoustic Waves. Physical Review Letters, 2017, 118, 154501.	2.9	48

#	Article	IF	CITATIONS
37	Simultaneous positioning of cells into two-dimensional arrays using ultrasound. Biotechnology and Bioengineering, 2007, 97, 1335-1339.	1.7	46
38	On-chip droplet production regimes using surface acoustic waves. Lab on A Chip, 2016, 16, 1675-1683.	3.1	45
39	The particle valve: On-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves. Applied Physics Letters, 2014, 105, .	1.5	44
40	Trapping and patterning of large particles and cells in a 1D ultrasonic standing wave. Lab on A Chip, 2017, 17, 3279-3290.	3.1	43
41	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A, 2017, 5, 16255-16262.	5.2	42
42	Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics, 2010, 50, 247-257.	2.1	41
43	Virtual membrane for filtration of particles using surface acoustic waves (SAW). Lab on A Chip, 2016, 16, 3515-3523.	3.1	41
44	Characterization of adhesive properties of red blood cells using surface acoustic wave induced flows for rapid diagnostics. Applied Physics Letters, 2014, 105, .	1.5	40
45	Surface acoustic wave enabled pipette on a chip. Lab on A Chip, 2017, 17, 438-447.	3.1	40
46	High angular resolution visible light positioning using a quadrant photodiode angular diversity aperture receiver (QADA). Optics Express, 2018, 26, 9230.	1.7	39
47	Cell Adhesion, Morphology, and Metabolism Variation via Acoustic Exposure within Microfluidic Cell Handling Systems. Advanced Science, 2019, 6, 1902326.	5.6	39
48	Diffraction-based acoustic manipulation in microchannels enables continuous particle and bacteria focusing. Lab on A Chip, 2020, 20, 2674-2688.	3.1	38
49	Finite element modeling of a microparticle manipulator. Ultrasonics, 2006, 44, e455-e460.	2.1	37
50	Delivery of femtolitre droplets using surface acoustic wave based atomisation for cryo-EM grid preparation. Journal of Structural Biology, 2018, 203, 94-101.	1.3	37
51	Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete. Ultrasonics, 2005, 43, 211-217.	2.1	33
52	Flow-rate-insensitive deterministic particle sorting using a combination of travelling and standing surface acoustic waves. Microfluidics and Nanofluidics, 2016, 20, 1.	1.0	33
53	Selective particle and cell clustering at air–liquid interfaces within ultrasonic microfluidic systems. Microfluidics and Nanofluidics, 2013, 14, 469-477.	1.0	32
54	Detecting Subtle Vibrations Using Graphene-Based Cellular Elastomers. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11345-11349.	4.0	32

#	Article	IF	Citations
55	Sound wave activated nano-sieve (SWANS) for enrichment of nanoparticles. Lab on A Chip, 2019, 19, 3032-3044.	3.1	32
56	High DNA integrity sperm selection using surface acoustic waves. Lab on A Chip, 2020, 20, 4262-4272.	3.1	32
57	Acoustic tweezing of particles using decaying opposing travelling surface acoustic waves (DOTSAW). Lab on A Chip, 2017, 17, 3489-3497.	3.1	31
58	Directional Brownian diffusion dynamics with variable magnitudes. Applied Physics Letters, 2008, 92, .	1.5	30
59	Analysis of profile and morphology of colloidal deposits obtained from evaporating sessile droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 567, 150-160.	2.3	29
60	Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter, 2019, 15, 8691-8705.	1.2	29
61	Colloidal deposit of an evaporating sessile droplet on a non-uniformly heated substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584, 124009.	2.3	29
62	Exosome trapping and enrichment using a sound wave activated nano-sieve (SWANS). Lab on A Chip, 2020, 20, 3633-3643.	3.1	29
63	Design of a Micro-Gripper and an Ultrasonic Manipulator for Handling Micron Sized Objects. , 2006, , .		28
64	Capillary well microplate. Applied Physics Letters, 2008, 93, .	1.5	28
65	Droplet Manipulation Using Acoustic Streaming Induced by a Vibrating Membrane. Analytical Chemistry, 2016, 88, 5696-5703.	3.2	28
66	Indoor Visible Light Positioning: Overcoming the Practical Limitations of the Quadrant Angular Diversity Aperture Receiver (QADA) by Using the Two-Stage QADA-Plus Receiver. Sensors, 2019, 19, 956.	2.1	28
67	Swirl mixing at microfluidic junctions due to low frequency side channel fluidic perturbations. Sensors and Actuators B: Chemical, 2010, 150, 811-818.	4.0	27
68	Curvature in the reproductive tract alters sperm–surface interactions. Nature Communications, 2021, 12, 3446.	5.8	26
69	The radiated fields of focussing air-coupled ultrasonic phased arrays. Ultrasonics, 2005, 43, 183-195.	2.1	25
70	Continuous flow ultrasonic particle trapping in a glass capillary. Journal of Applied Physics, 2014, 115,	1.1	25
71	Acoustically enhanced microfluidic mixer to synthesize highly uniform nanodrugs without the addition of stabilizers. International Journal of Nanomedicine, 2018, Volume 13, 1353-1359.	3.3	25
72	Versatile platform for performing protocols on a chip utilizing surface acoustic wave (SAW) driven mixing. Lab on A Chip, 2019, 19, 262-271.	3.1	25

#	Article	IF	CITATIONS
73	Nanoscale displacement sensing using microfabricated variable-inductance planar coils. Applied Physics Letters, 2013, 103, 143501.	1.5	24
74	Three-dimensional imaging on a chip using optofluidics light-sheet fluorescence microscopy. Lab on A Chip, 2021, 21, 2945-2954.	3.1	24
75	Continuous sorting of Brownian particles using coupled photophoresis and asymmetric potential cycling. Optics Letters, 2008, 33, 584.	1.7	23
76	Sliding variability of droplets on a hydrophobic incline due to surface entrained air bubbles. Journal of Colloid and Interface Science, 2011, 354, 832-842.	5.0	23
77	Controlled driven oscillations of double-walled carbon nanotubes. Europhysics Letters, 2009, 87, 16002.	0.7	22
78	Visible Light Positioning Using an Aperture and a Quadrant Photodiode., 2017,,.		22
79	A capacity for mixing in capillary wells for microplates. Analytical Biochemistry, 2011, 410, 152-154.	1.1	21
80	Hydrophobicity effect in the self assembly of particles in an evaporating droplet. Journal of Applied Physics, 2010, 108, 034512.	1.1	20
81	Intensity influence on Gaussian beam laser based measurements using quadrant photodiodes. Applied Optics, 2010, 49, 3669.	2.1	20
82	Particle manipulation using an ultrasonic micro-gripper. Applied Physics Letters, 2012, 101, 163504.	1.5	20
83	Single line particle focusing using a vibrating bubble. Applied Physics Letters, 2014, 105, .	1.5	20
84	Optical sorting of dielectric Rayleigh spherical particles with scattering and standing waves. Optics Express, 2009, 17, 5321.	1.7	19
85	Point spread function effect in image-based fluorescent microplate detection. Analytical Biochemistry, 2010, 397, 256-258.	1.1	19
86	Effect of an Encapsulated Bubble in Inhibiting Droplet Sliding. Langmuir, 2010, 26, 17695-17702.	1.6	19
87	Droplet spreading using low frequency vibration. Applied Physics Letters, 2011, 98, .	1.5	19
88	Microfluidic mixing in a Y-junction open channel. AIP Advances, 2012, 2, .	0.6	19
89	Feedback-Controlled MEMS Force Sensor for Characterization of Microcantilevers. Journal of Microelectromechanical Systems, 2015, 24, 1092-1101.	1.7	19
90	Liquid filling in standard circular well microplates. Journal of Applied Physics, 2010, 108, 124701.	1.1	18

#	Article	IF	Citations
91	Zero displacement microelectromechanical force sensor using feedback control. Applied Physics Letters, 2014, 104, 153502.	1.5	18
92	Selective droplet splitting using single layer microfluidic valves. Sensors and Actuators B: Chemical, 2019, 292, 233-240.	4.0	18
93	Translational and rotational coupling in Brownian rods near a solid surface. Physical Review E, 2010, 82, 041126.	0.8	17
94	Coalescence of Surfactant-Stabilized Adjacent Droplets Using Surface Acoustic Waves. Analytical Chemistry, 2019, 91, 7538-7545.	3.2	17
95	Bacteriophages evolve enhanced persistence to a mucosal surface. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
96	Continuous particle assembly in a capillary cell. Applied Physics Letters, 2009, 95, 153501.	1.5	16
97	Imaging using air-coupled polymer-membrane capacitive ultrasonic arrays. Ultrasonics, 2004, 42, 859-864.	2.1	15
98	Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics. Ultrasonics, 2008, 48, 529-536.	2.1	15
99	Capillary Wells Microplate with Side Optical Access. Journal of Biomolecular Screening, 2010, 15, 1160-1164.	2.6	15
100	Pressure-driven flow in open fluidic channels. Journal of Colloid and Interface Science, 2011, 357, 534-540.	5.0	15
101	Nanoparticle manipulation within a microscale acoustofluidic droplet. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	14
102	The role of channel height and actuation method on particle manipulation in surface acoustic wave (SAW)-driven microfluidic devices. Microfluidics and Nanofluidics, 2022, 26, 1.	1.0	14
103	Radiated fields of capacitive micromachined ultrasonic transducers in air. Journal of the Acoustical Society of America, 2003, 114, 1435-1449.	0.5	13
104	Delicate selective single particle handling with a float-sink scheme. Applied Physics Letters, 2009, 94, .	1.5	13
105	Absorbance and fluorometric sensing with capillary wells microplates. Review of Scientific Instruments, 2010, 81, 124301.	0.6	13
106	The mechanics of microparticle collection in an open fluid volume undergoing low frequency horizontal vibration. Journal of Applied Physics, 2013, 114, .	1.1	13
107	Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites. Langmuir, 2020, 36, 1138-1146.	1.6	13
108	Paper-Based Acoustofluidics for Separating Particles and Cells. Analytical Chemistry, 2020, 92, 8569-8578.	3.2	13

#	Article	IF	CITATIONS
109	Highâ€Frequency Ultrasound Boosts Bull and Human Sperm Motility. Advanced Science, 2022, 9, e2104362.	5.6	13
110	Non-contact acoustic trapping in circular cross-section glass capillaries: A numerical study. Journal of the Acoustical Society of America, 2012, 132, 2978-2987.	0.5	12
111	Forced spreading behavior of droplets undergoing low frequency vibration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 144-152.	2.3	12
112	Stability of flowing open fluidic channels. AIP Advances, 2013, 3, .	0.6	11
113	A microfabricated fringing field capacitive pH sensor with an integrated readout circuit. Applied Physics Letters, 2014, 104, .	1.5	11
114	Optimisation of an acoustic resonator for particle manipulation in air. Sensors and Actuators B: Chemical, 2016, 224, 529-538.	4.0	11
115	QADA-PLUS: A Novel Two-Stage Receiver for Visible Light Positioning. , 2018, , .		11
116	Comparison of bulk and microfluidic methods to monitor the phase behaviour of nanoparticles during digestion of lipid-based drug formulations using <i>in situ</i> X-ray scattering. Soft Matter, 2019, 15, 9565-9578.	1.2	11
117	On-demand sample injection: combining acoustic actuation with a tear-drop shaped nozzle to generate droplets with precise spatial and temporal control. Lab on A Chip, 2020, 20, 253-265.	3.1	11
118	Controlled particle self-assembly in an evaporating droplet. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 398, 64-68.	2.3	10
119	Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Computational Biology, 2020, 16, e1007853.	1.5	10
120	Motion controlled by sound. Nature, 2016, 537, 493-494.	13.7	9
121	Droplet Breakup at the Entrance to a Bypass Channel in a Microfluidic System. Physical Review Applied, 2019, 11, .	1.5	9
122	Multiple outcome particle manipulation using cascaded surface acoustic waves (CSAW). Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	9
123	Phase and amplitude retrieval of objects embedded in a sinusoidal background from its diffraction pattern. Applied Optics, 2010, 49, 1831.	2.1	8
124	Microparticle Response to Two-Dimensional Streaming Flows in Rectangular Chambers Undergoing Low-Frequency Horizontal Vibrations. Physical Review Applied, 2014, 2, .	1.5	8
125	Strategies for single particle manipulation using acoustic radiation forces and external tools. Physics Procedia, 2010, 3, 255-262.	1.2	7
126	Particle manipulation affected by streaming flows in vertically actuated open rectangular chambers. Physics of Fluids, 2016, 28, 032001.	1.6	7

#	Article	IF	Citations
127	Rapid Characterization of Multiple-Contact Miscibility: Toward a Slim-Tube on a Chip. Analytical Chemistry, 2019, 91, 13681-13687.	3.2	7
128	Novel sample preparation technique for protein crystal X-ray crystallographic analysis combining microfluidics and acoustic manipulation. Journal of Applied Crystallography, 2009, 42, 636-641.	1.9	6
129	Optimizing photophoresis and asymmetric force fields for grading of Brownian particles. Applied Optics, 2009, 48, 6820.	2.1	6
130	Specific collection of adherent cells using laser release in a droplet-driven capillary cell. Journal of Biomedical Optics, 2010, 15, 065003.	1.4	6
131	Quantification and comparison of low frequency microparticle collection mechanism in an open rectangular chamber. Journal of Applied Physics, 2014, 115, 174505.	1.1	6
132	The inside-out supercapacitor: induced charge storage in reduced graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 32185-32191.	1.3	6
133	Tailoring surface acoustic wave atomisation for cryo-electron microscopy sample preparation. Lab on A Chip, 2019, 19, 1378-1385.	3.1	6
134	Pore-scale multiple-contact miscibility measurements in a microfluidic chip. Lab on A Chip, 2020, 20, 3582-3590.	3.1	6
135	Communication Aspects of Visible Light Positioning (VLP) Systems Using a Quadrature Angular Diversity Aperture (QADA) Receiver. Sensors, 2020, 20, 1977.	2.1	6
136	Capacitive Sensing for Monitoring of Microfluidic Protocols Using Nanoliter Dispensing and Acoustic Mixing. Analytical Chemistry, 2020, 92, 10725-10732.	3.2	6
137	Increasing the fine particle fraction of pressurised metered dose inhaler solutions with novel actuator shapes. International Journal of Pharmaceutics, 2021, 597, 120341.	2.6	6
138	A model for the radiated field of a plane piston after reflection from a curved surface. Journal of the Acoustical Society of America, 2004, 116, 2793-2801.	0.5	5
139	Tailored leaky plasmon waves from a subwavelength aperture for optical particle trapping on a chip. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 602.	0.9	5
140	Effect of a Rupturing Encapsulated Bubble in Inducing the Detachment of a Drop. Langmuir, 2012, 28, 17656-17665.	1.6	5
141	Ultrasonic manipulation of particles in an open fluid film. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1964-1970.	1.7	5
142	The role height plays in the spreading of liquid droplets over sharp edges. Applied Physics Letters, 2013, 102, .	1.5	5
143	A MEMS capacitive pH sensor for high acidic and basic solutions. , 2014, , .		5
144	Continuous Focusing of Microparticles in Horizontally Actuated Rectangular Channels. Physical Review Applied, 2018, 10, .	1.5	5

#	Article	IF	CITATIONS
145	Microvalves for integrated selective droplet generation, splitting and merging on a chip. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	5
146	Pendant Bubble Method for an Accurate Characterization of Superhydrophobic Surfaces. Langmuir, 2011, 27, 13978-13982.	1.6	4
147	Adhesion force studies using a dangling optical lever with variable sensitivity. Optics Letters, 2011, 36, 175.	1.7	4
148	Strong upstream flow characteristics in the formation of rivulets. Physical Review E, 2011, 83, 026304.	0.8	4
149	Sorting of Brownian rods by the use of an asymmetric potential. Journal of Chemical Physics, 2011, 134, 064514.	1.2	4
150	Selective Liquid Droplet Transfer Using Injected Bubbles. Applied Physics Express, 2013, 6, 077301.	1,1	4
151	Frequency effects on microparticle motion in horizontally actuated open rectangular chambers. Microfluidics and Nanofluidics, 2015, 19, 1209-1219.	1.0	4
152	Microfluidic enhancement of self-assembly systems. Lab on A Chip, 2021, 21, 1661-1675.	3.1	4
153	A theoretical model for a finite-size acoustic receiver. Journal of the Acoustical Society of America, 2004, 115, 1546-1556.	0.5	3
154	Particle movement with squeezing flow of liquid films. Sensors and Actuators B: Chemical, 2010, 151, 297-303.	4.0	3
155	Low-volume filling of microplate wells using vibration. Analytical Biochemistry, 2012, 425, 10-12.	1.1	3
156	Luminaire Reference Points (LRP) in Visible Light Positioning using Hybrid Imaging-Photodiode (HIP) Receivers. , 2019, , .		3
157	Manipulation and Patterning of Micro-objects Using Acoustic Waves. , 2022, , 61-90.		3
158	Radiated fields of rectangular air-coupled micromachined transducers. , 0, , .		2
159	Computer-aided analysis of optical diffraction by low-frequency liquid surface acoustic waves. Applied Optics, 2009, 48, C159.	2.1	2
160	Observation of dynamic samples using simple coverslip fluidics. Biotechnic and Histochemistry, 2011, 86, 115-118.	0.7	2
161	Bubble inducing cell lysis in a sessile droplet. Applied Physics Letters, 2014, 104, 103704.	1.5	2
162	Open microdroplet diluter for concentration-gradient generation. Applied Physics Express, 2014, 7, 087201.	1.1	2

#	Article	IF	CITATIONS
163	Using Nano-mechanics and Surface Acoustic Wave (SAW) for Disease Monitoring and Diagnostics at a Cellular Level in Red Blood Cells. Physics Procedia, 2015, 70, 18-20.	1.2	2
164	Dual-aperture hologram receiver for visible light communications. Optics Communications, 2021, 490, 126943.	1.0	2
165	Minimalist and convenient mode changing off-axis digital holography. Optics Communications, 2010, 283, 295-298.	1.0	1
166	Particle manipulation using acoustic radiation forces in micromachined devices. AIP Conference Proceedings, 2012, , .	0.3	1
167	Liquid Spreading Characteristics due to Substrate Modal Vibrations. , 2014, , .		1
168	Microparticle Trapping in Streaming Flows in Open Rectangular Chambers Undergoing Low Frequency Vertical Vibrations. , 2014, , .		1
169	Nanoparticle Capture Using Ultrasonic Actuation. , 2019, , .		1
170	Role of Multiple-Contact Miscibility in Drainage from a Two-Dimensional Porous Medium. Physical Review Applied, 2021, 15, .	1.5	1
171	The calculation of radiated acoustic pressure fields from irregular multi-sided polygons. Journal of the Acoustical Society of America, 2004, 115, 2021-2031.	0.5	O
172	Modelling of the radiated field from multi-element capacitive micromachined ultrasonic transducers. Ultrasonics, 2004, 42, 447-452.	2.1	0
173	Acoustic fields of nonplanar radiators. Journal of the Acoustical Society of America, 2007, 122, 2587.	0.5	0
174	Accounting for brownian forces in nano-particle sorting. , 2009, , .		0
175	Selective removal of micro-particles from a floating monolayer cluster. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 390, 134-141.	2.3	0
176	Two Dimensional Acoustic Manipulation in Microfluidic Channels. Applied Mechanics and Materials, 2011, 117-119, 624-632.	0.2	0
177	Oscillating microbubbles for selective particle sorting in acoustic microfluidic devices. , 2012, , .		0
178	Finite element modeling of free surface particle clustering. , 2012, , .		0
179	Particle trapping in a capillary tube. , 2012, , .		0
180	Controlled particle positioning using liquid film squeeze flow. Sensors and Actuators B: Chemical, 2013, 181, 925-931.	4.0	0

#	Article	IF	CITATIONS
181	Force-compensating MEMS sensor for AFM cantilever stiffness calibration. , 2014, , .		O
182	Acoustic Resonator Optimisation for Airborne Particle Manipulation. Physics Procedia, 2015, 70, 6-9.	1.2	0
183	Analysis on electrical breakdown in OFDM systems. , 2018, , .		O
184	Experimental Measurement of Vibration of Liquid Droplet at Low Bond Numbers Using ESPI. Lecture Notes in Mechanical Engineering, 2017, , 1371-1379.	0.3	0
185	Title is missing!. , 2020, 16, e1007853.		0
186	Title is missing!. , 2020, 16, e1007853.		0
187	Title is missing!. , 2020, 16, e1007853.		0
188	Title is missing!. , 2020, 16, e1007853.		0
189	Title is missing!. , 2020, 16, e1007853.		0
190	Title is missing!. , 2020, 16, e1007853.		0