Jinshui Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018591/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging Singleâ€Photon Detectors Based on Lowâ€Dimensional Materials. Small, 2022, 18, e2103963.	10.0	23
2	MoS ₂ Nanoribbon Transistor for Logic Electronics. IEEE Transactions on Electron Devices, 2022, 69, 3433-3438.	3.0	1
3	Avalanche photodetectors based on two-dimensional layered materials. Nano Research, 2021, 14, 1878-1888.	10.4	44
4	Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization technologies. Nano Research, 2021, 14, 1840-1862.	10.4	36
5	Determination of Dielectric Functions and Exciton Oscillator Strength of Two-Dimensional Hybrid Perovskites. , 2021, 3, 148-159.		47
6	Direct Optoelectronic Imaging of 2D Semiconductor–3D Metal Buried Interfaces. ACS Nano, 2021, 15, 5618-5630.	14.6	35
7	Narrowing Bandgap of HfS ₂ by Te Substitution for Shortâ€Wavelength Infrared Photodetection. Advanced Optical Materials, 2021, 9, 2002248.	7.3	17
8	Post-CMOS Compatible Aluminum Scandium Nitride/2D Channel Ferroelectric Field-Effect-Transistor Memory. Nano Letters, 2021, 21, 3753-3761.	9.1	83
9	Recent Progress on Electrical and Optical Manipulations of Perovskite Photodetectors. Advanced Science, 2021, 8, e2100569.	11.2	118
10	Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.	26.0	292
11	Ternary 2D Layered Material FePSe ₃ and Nearâ€Infrared Photodetector. Advanced Electronic Materials, 2021, 7, 2100207.	5.1	19
12	Controllable Doping in 2D Layered Materials. Advanced Materials, 2021, 33, e2104942.	21.0	59
13	High-detectivity tin disulfide nanowire photodetectors with manipulation of localized ferroelectric polarization field. Nanophotonics, 2021, 10, 4637-4644.	6.0	4
14	Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nature Communications, 2020, 11, 3552.	12.8	90
15	Giant Gate-Tunability of Complex Refractive Index in Semiconducting Carbon Nanotubes. ACS Photonics, 2020, 7, 2896-2905.	6.6	16
16	Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces. Nano Letters, 2020, 20, 2907-2915.	9.1	69
17	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	12.8	213
18	Black phosphorus electronic and optoelectronic devices. 2D Materials, 2019, 6, 032003.	4.4	76

Jinshui Miao

#	Article	lF	CITATIONS
19	Screenâ€Printed Soft Capacitive Sensors for Spatial Mapping of Both Positive and Negative Pressures. Advanced Functional Materials, 2019, 29, 1809116.	14.9	75
20	Direct Printing for Additive Patterning of Silver Nanowires for Stretchable Sensor and Display Applications. Advanced Materials Technologies, 2018, 3, 1700232.	5.8	68
21	Single Pixel Black Phosphorus Photodetector for Nearâ€Infrared Imaging. Small, 2018, 14, 1702082.	10.0	56
22	Fully Printed Flexible Dual-Gate Carbon Nanotube Thin-Film Transistors with Tunable Ambipolar Characteristics for Complementary Logic Circuits. ACS Nano, 2018, 12, 11572-11578.	14.6	42
23	Ultrathin MoO2 nanosheets with good thermal stability and high conductivity. AIP Advances, 2017, 7, .	1.3	37
24	Photothermal Effect Induced Negative Photoconductivity and High Responsivity in Flexible Black Phosphorus Transistors. ACS Nano, 2017, 11, 6048-6056.	14.6	104
25	Fully Printed Silverâ€Nanoparticleâ€Based Strain Gauges with Record High Sensitivity. Advanced Electronic Materials, 2017, 3, 1700067.	5.1	75
26	Fully printed flexible carbon nanotube photodetectors. Applied Physics Letters, 2017, 110, .	3.3	23
27	Vertically Stacked and Self-Encapsulated van der Waals Heterojunction Diodes Using Two-Dimensional Layered Semiconductors. ACS Nano, 2017, 11, 10472-10479.	14.6	55
28	Black Phosphorus Schottky Diodes: Channel Length Scaling and Application as Photodetectors. Advanced Electronic Materials, 2016, 2, 1500346.	5.1	51
29	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	14.6	118
30	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small, 2015, 11, 2346-2346.	10.0	3
31	Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes. Scientific Reports, 2015, 5, 17883.	3.3	20
32	Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705.	14.9	52
33	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	10.0	359
34	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). Small, 2015, 11, 890-890.	10.0	2
35	Ultrashort Channel Length Black Phosphorus Field-Effect Transistors. ACS Nano, 2015, 9, 9236-9243.	14.6	138
36	High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios. Small, 2015, 11, 936-942.	10.0	166

JINSHUI ΜΙΑΟ

#	Article	IF	CITATIONS
37	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8232-8232.	21.0	9
38	Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Advanced Materials, 2014, 26, 8203-8209.	21.0	168
39	Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors. ACS Nano, 2014, 8, 3628-3635.	14.6	238