LuÃ-s PÃ;dua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018466/publications.pdf

Version: 2024-02-01

414303 516561 1,753 46 16 32 citations g-index h-index papers 46 46 46 2143 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Water Hyacinth (Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones, 2022, 6, 47.	2.7	19
2	Vineyard classification using OBIA on UAV-based RGB and multispectral data: A case study in different wine regions. Computers and Electronics in Agriculture, 2022, 196, 106905.	3.7	20
3	Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102856.	0.9	8
4	An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6515-6531.	2.3	15
5	QVigourMap: A GIS Open Source Application for the Creation of Canopy Vigour Maps. Agronomy, 2021, 11, 952.	1.3	14
6	An efficient method for acquisition of spectral BRDFs in real-world scenarios. Computers and Graphics, $2021, \ldots$	1.4	6
7	Prototyping IoT-Based Virtual Environments: An Approach toward the Sustainable Remote Management of Distributed Mulsemedia Setups. Applied Sciences (Switzerland), 2021, 11, 8854.	1.3	3
8	Terrace Vineyards Detection from UAV Imagery Using Machine Learning: A Preliminary Approach. Lecture Notes in Computer Science, 2021, , 16-26.	1.0	0
9	BRDF Sampling from Hyperspectral Images: A Proof of Concept. , 2021, , .		O
10	Virtual Environments & Precision Viticulture: A Case Study. , 2021, , .		0
11	Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sensing, 2020, 12, 3032.	1.8	18
12	VisWebDrone: A Web Application for UAV Photogrammetry Based on Open-Source Software. ISPRS International Journal of Geo-Information, 2020, 9, 679.	1.4	6
13	Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Remote Sensing, 2020, 12, 3043.	1.8	27
14	Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios. International Journal of Environmental Research and Public Health, 2020, 17, 1868.	1.2	15
15	Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sensing, 2020, 12, 139.	1.8	30
16	Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. ISPRS International Journal of Geo-Information, 2020, 9, 225.	1.4	34
17	Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sensing, 2020, 12, 1046.	1.8	136
18	Target Influence on Ground Control Points (GCPs) Identification in Aerial Images. , 2020, , .		0

#	Article	IF	Citations
19	Estimation of Leaf Area Index in Chestnut Trees using Multispectral Data from an Unmanned Aerial Vehicle. , 2020, , .		1
20	Vineyard Classification Using Machine Learning Techniques Applied to RGB-UAV Imagery., 2020,,.		5
21	The New Paramotor Project: Flexibility at Low Cost to Overcome Main Limitations of Multi-Copters and Fixed-Wings UAVs. , 2020, , .		O
22	Mysense-Webgis: A Graphical Map Layering-Based Decision Support Tool for Agriculture. , 2020, , .		2
23	Monitoring of Olive Trees Temperatures under Different Irrigation Strategies by UAV Thermal Infrared Imagery. , 2020, , .		2
24	Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Agronomy, 2019, 9, 581.	1.3	48
25	Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers, 2019, 8, 38.	2.1	6
26	UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sensing, 2019, 11, 855.	1.8	54
27	mySense: A comprehensive data management environment to improve precision agriculture practices. Computers and Electronics in Agriculture, 2019, 162, 882-894.	3.7	68
28	MixAR. Journal of Information Technology Research, 2019, 12, 1-33.	0.3	5
29	Classification of an Agrosilvopastoral System Using RGB Imagery from an Unmanned Aerial Vehicle. Lecture Notes in Computer Science, 2019, , 248-257.	1.0	3
30	Digital Ampelographer: A CNN Based Preliminary Approach. Lecture Notes in Computer Science, 2019, , 258-271.	1.0	6
31	Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sensing, 2018, 10, 1907.	1.8	54
32	A rapid prototyping tool to produce $360 \hat{A}^\circ$ video-based immersive experiences enhanced with virtual/multimedia elements. Procedia Computer Science, 2018, 138, 441-453.	1.2	12
33	Deep Learning-Based Methodological Approach for Vineyard Early Disease Detection Using Hyperspectral Data. , 2018, , .		7
34	UAS-based imagery and photogrammetric processing for tree height and crown diameter extraction. , 2018, , .		5
35	Machine learning classification methods in hyperspectral data processing for agricultural applications. , $2018, , .$		6
36	Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs. Remote Sensing, 2018, 10, 24.	1.8	28

#	Article	IF	CITATIONS
37	Vineyard properties extraction combining UAS-based RGB imagery with elevation data. International Journal of Remote Sensing, 2018, 39, 5377-5401.	1.3	30
38	UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing, 2017, 38, 2349-2391.	1.3	242
39	Bringing together UAS-based land surveying and procedural modelling of buildings to set up enhanced VR environments for cultural heritage. , 2017, , .		2
40	Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Computer Science, 2017, 121, 407-414.	1.2	20
41	Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing, 2017, 9, 1110.	1.8	748
42	Cost-effective and Lightweight Mobile Units for MixAR: A Comparative Trial among Different Setups. Procedia Computer Science, 2015, 64, 870-878.	1.2	7
43	MixAR Mobile Prototype: Visualizing Virtually Reconstructed Ancient Structures In Situ. Procedia Computer Science, 2015, 64, 852-861.	1.2	19
44	Towards Modern Cost-effective and Lightweight Augmented Reality Setups. International Journal of Web Portals, 2015, 7, 33-59.	1.1	5
45	Evaluation of MS Kinect for Elderly Meal Intake Monitoring. Procedia Technology, 2014, 16, 1383-1390.	1.1	17
46	Towards Modern Cost-Effective and Lightweight Augmented Reality Setups., 0,, 396-423.		0