Kug-Seung Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018393/publications.pdf

Version: 2024-02-01

57631 51492 8,145 139 44 86 citations h-index g-index papers 142 142 142 10075 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production. Nature Materials, 2020, 19, 436-442.	13.3	725
2	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
3	Reversible and cooperative photoactivation of single-atom Cu/TiO2 photocatalysts. Nature Materials, 2019, 18, 620-626.	13.3	501
4	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. Chemistry of Materials, 2017, 29, 1684-1694.	3.2	479
5	Large-Scale Synthesis of Carbon-Shell-Coated FeP Nanoparticles for Robust Hydrogen Evolution Reaction Electrocatalyst. Journal of the American Chemical Society, 2017, 139, 6669-6674.	6.6	451
6	Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of thep-GaN surface. Journal of Applied Physics, 2003, 93, 9383-9385.	1.1	343
7	Electrocatalytic activity and stability of Pt supported on Sb-doped SnO2 nanoparticles for direct alcohol fuel cells. Journal of Catalysis, 2008, 258, 143-152.	3.1	228
8	Oxygen-deficient triple perovskites as highly active and durable bifunctional electrocatalysts for oxygen electrode reactions. Science Advances, 2018, 4, eaap9360.	4.7	195
9	A tailored oxide interface creates dense Pt single-atom catalysts with high catalytic activity. Energy and Environmental Science, 2020, 13, 1231-1239.	15.6	140
10	Precisely Constructing Orbital Coupling-Modulated Dual-Atom Fe Pair Sites for Synergistic CO ₂ Electroreduction. ACS Energy Letters, 2022, 7, 640-649.	8.8	127
11	Surface Structure of Pt-Modified Au Nanoparticles and Electrocatalytic Activity in Formic Acid Electro-Oxidation. Journal of Physical Chemistry C, 2007, 111, 19126-19133.	1.5	126
12	Ga–Doped Pt–Ni Octahedral Nanoparticles as a Highly Active and Durable Electrocatalyst for Oxygen Reduction Reaction. Nano Letters, 2018, 18, 2450-2458.	4. 5	125
13	Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt–Rh, Pt–SnO2 and Pt–Rh–SnO2 nanoclusters. Electrochemistry Communications, 2009, 11, 724-727.	2.3	124
14	Biomass-Derived Air Cathode Materials: Pore-Controlled S,N-Co-doped Carbon for Fuel Cells and Metal–Air Batteries. ACS Catalysis, 2019, 9, 3389-3398.	5 . 5	117
15	Hybrid Cellular Nanosheets for High-Performance Lithium-lon Battery Anodes. Journal of the American Chemical Society, 2015, 137, 11954-11961.	6.6	114
16	Electrocatalytic activity of carbon-supported Pt–Au nanoparticles for methanol electro-oxidation. Electrochimica Acta, 2007, 52, 5599-5605.	2.6	105
17	Interfacial Metal–Oxide Interactions in Resistive Switching Memories. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19287-19295.	4.0	103
18	Is Li ₄ Ti ₅ O ₁₂ a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li ₄ Ti ₅ O ₁₂ electrode and electrolyte. Journal of Materials Chemistry A, 2014, 2, 631-636.	5.2	100

#	Article	IF	CITATIONS
19	Catalytic Reactions in Direct Ethanol Fuel Cells. Angewandte Chemie - International Edition, 2011, 50, 2270-2274.	7.2	98
20	Enhanced stability and activity of Ptâ€"Y alloy catalysts for electrocatalytic oxygen reduction. Chemical Communications, 2011, 47, 11414.	2.2	94
21	Electronic interaction between transition metal single-atoms and anatase TiO ₂ boosts CO ₂ photoreduction with H ₂ O. Energy and Environmental Science, 2022, 15, 601-609.	15.6	88
22	Understanding the Bifunctional Effect for Removal of CO Poisoning: Blend of a Platinum Nanocatalyst and Hydrous Ruthenium Oxide as a Model System. ACS Catalysis, 2016, 6, 2398-2407.	5.5	86
23	Engineering Titanium Dioxide Nanostructures for Enhanced Lithium-Ion Storage. Journal of the American Chemical Society, 2018, 140, 16676-16684.	6.6	85
24	Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO ₂ nanocatalysts. Chemical Communications, 2010, 46, 794-796.	2.2	77
25	Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Ptâ^'Ni Alloy Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 19732-19739.	1.5	72
26	Oneâ€Dimensional <i>ï€</i> –d Conjugated Coordination Polymer for Electrochromic Energy Storage Device with Exceptionally High Performance. Advanced Science, 2020, 7, 1903109.	5.6	72
27	Hollow Nanostructured Metal Silicates with Tunable Properties for Lithium Ion Battery Anodes. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25725-25732.	4.0	71
28	Electrochemical Tantalum Oxide for Resistive Switching Memories. Advanced Materials, 2017, 29, 1703357.	11.1	69
29	Stabilizing role of Mo in TiO2-MoOx supported Ir catalyst toward oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 280, 119433.	10.8	69
30	Highly Stable Iron- and Manganese-Based Cathodes for Long-Lasting Sodium Rechargeable Batteries. Chemistry of Materials, 2016, 28, 7241-7249.	3.2	66
31	Reconstructing the Coordination Environment of Platinum Single-Atom Active Sites for Boosting Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 466-475.	5.5	62
32	Electronically modified Pd catalysts supported on N-doped carbon for the dehydrogenation of formic acid. International Journal of Hydrogen Energy, 2016, 41, 15453-15461.	3.8	60
33	Reducing the high hydrogen binding strength of vanadium carbide MXene with atomic Pt confinement for high activity toward HER. Applied Catalysis B: Environmental, 2022, 304, 120989.	10.8	58
34	New Insight on Openâ€Structured Sodium Vanadium Oxide as Highâ€Capacity and Long Life Cathode for Zn–lon Storage: Structure, Electrochemistry, and Firstâ€Principles Calculation. Advanced Energy Materials, 2020, 10, 2001595.	10.2	54
35	Facile synthesis of highly active and stable Pt–Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction. Chemical Communications, 2010, 46, 8401.	2.2	53
36	Transition from perovskite to misfit-layered structure materials: a highly oxygen deficient and stable oxygen electrode catalyst. Energy and Environmental Science, 2021, 14, 2472-2484.	15.6	53

#	Article	IF	Citations
37	Quantification of Active Site Density and Turnover Frequency: From Single-Atom Metal to Nanoparticle Electrocatalysts. Jacs Au, 2021, 1, 586-597.	3.6	53
38	Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chemical Communications, 2016, 52, 11775-11778.	2.2	51
39	Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Research, 2019, 12, 695-700.	5.8	50
40	Mnâ€Rich P′2â€Na _{0.67} [Ni _{0.1} Fe _{0.1} Mn _{0.8}]O ₂ Highâ€Energyâ€Density and Longâ€Life Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001346.	as 10.2	50
41	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49
42	Pt3Y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9758-9765.	3.8	47
43	Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Scientific Reports, 2016, 6, 32433.	1.6	47
44	Multiple Heterojunction in Single Titanium Dioxide Nanoparticles for Novel Metal-Free Photocatalysis. Nano Letters, 2018, 18, 4257-4262.	4.5	45
45	Atomic Structure Modification of Feâ€'Nâ€'C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithiumâ€"Sulfur Batteries. Advanced Functional Materials, 2022, 32, .	7.8	45
46	Effect of Surface Segregation on the Methanol Oxidation Reaction in Carbon-Supported Ptâ^'Ru Alloy Nanoparticles. Langmuir, 2010, 26, 9123-9129.	1.6	44
47	A highly active and stable 3D dandelion spore-structured self-supporting Ir-based electrocatalyst for proton exchange membrane water electrolysis fabricated using structural reconstruction. Energy and Environmental Science, 2022, 15, 3449-3461.	15.6	44
48	Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment. Applied Catalysis B: Environmental, 2013, 129, 375-381.	10.8	43
49	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
50	Continuous Oxygen Vacancy Gradient in TiO ₂ Photoelectrodes by a Photoelectrochemicalâ€Driven "Selfâ€Purification―Process. Advanced Energy Materials, 2022, 12, .	10.2	42
51	Hysteresisâ€Suppressed Reversible Oxygenâ€Redox Cathodes for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2022, 12, .	10.2	42
52	Development of robust Pt shell through organic hydride donor in PtCo@Pt core-shell electrocatalysts for highly stable proton exchange membrane fuel cells. Journal of Catalysis, 2019, 379, 112-120.	3.1	41
53	Zn _{0.35} Co _{0.65} O – A Stable and Highly Active Oxygen Evolution Catalyst Formed by Zinc Leaching and Tetrahedral Coordinated Cobalt in Wurtzite Structure. Advanced Energy Materials, 2019, 9, 1900328.	10.2	41
54	Effect of PtRu alloying degree on electrocatalytic activities and stabilities. Applied Catalysis B: Environmental, 2011, 102, 334-342.	10.8	40

#	Article	IF	CITATIONS
55	Development of a galvanostatic analysis technique as an in-situ diagnostic tool for PEMFC single cells and stacks. International Journal of Hydrogen Energy, 2012, 37, 5891-5900.	3.8	40
56	General Efficacy of Atomically Dispersed Pt Catalysts for the Chlorine Evolution Reaction: Potential-Dependent Switching of the Kinetics and Mechanism. ACS Catalysis, 2021, 11, 12232-12246.	5.5	40
57	Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 479.	1.6	39
58	Performance degradation and microstructure changes in freeze–thaw cycling for PEMFC MEAs with various initial microstructures. International Journal of Hydrogen Energy, 2010, 35, 12888-12896.	3.8	39
59	Electrocatalytic properties of Pd clusters on Au nanoparticles in formic acid electro-oxidation. Electrochimica Acta, 2010, 55, 4339-4345.	2.6	39
60	Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.	5.2	39
61	Structural and Thermodynamic Understandings in Mnâ€Based Sodium Layered Oxides during Anionic Redox. Advanced Science, 2020, 7, 2001263.	5.6	38
62	Reversible Surface Segregation of Pt in a Pt ₃ Au/C Catalyst and Its Effect on the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 9164-9170.	1.5	37
63	An optimized approach toward high energy density cathode material for K-ion batteries. Energy Storage Materials, 2020, 27, 342-351.	9.5	37
64	Effect of post heat-treatment of composition-controlled PdFe nanoparticles for oxygen reduction reaction. Journal of Power Sources, 2016, 303, 234-242.	4.0	36
65	<i>Operando</i> Stability of Platinum Electrocatalysts in Ammonia Oxidation Reactions. ACS Catalysis, 2020, 10, 11674-11684.	5.5	36
66	Application of TGA techniques to analyze the compositional and structural degradation of PEMFC MEAs. Polymer Degradation and Stability, 2012, 97, 1010-1016.	2.7	34
67	Controlling active sites of Fe–N–C electrocatalysts for oxygen electrocatalysis. Nano Energy, 2020, 78, 105395.	8.2	34
68	Highly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction. ACS Applied Energy Materials, 2020, 3, 4226-4237.	2.5	31
69	Phosphate adsorption and its effect on oxygen reduction reaction for PtxCoy alloy and Aucore–Ptshell electrocatalysts. Electrochimica Acta, 2011, 56, 8802-8810.	2.6	30
70	Structural Insights into Multiâ€Metal Spinel Oxide Nanoparticles for Boosting Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2107868.	11.1	30
71	Methanol electro-oxidation on carbon-supported and Pt-modified Au nanoparticles. Catalysis Today, 2008, 132, 127-131.	2.2	28
72	Synchrotron-based x-ray absorption spectroscopy for the electronic structure of Li x Mn 0.8 Fe 0.2 PO 4 mesocrystal in Li + batteries. Nano Energy, 2017, 31, 495-503.	8.2	28

#	Article	IF	Citations
73	Electrocatalytic Properties of TiO2-Embedded Pt Nanoparticles in Oxidation of Methanol: Particle Size Effect and Proton Spillover Effect. Electrocatalysis, 2011, 2, 297-306.	1.5	27
74	Design of Co-NC as efficient electrocatalyst: The unique structure and active site for remarkable durability of proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 308, 121220.	10.8	26
75	Waste pig blood-derived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc–air batteries and AEMFCs. Applied Surface Science, 2021, 563, 150208.	3.1	25
76	Modified polyol synthesis of PtRu/C for high metal loading and effect of post-treatment. Journal of Power Sources, 2010, 195, 1031-1037.	4.0	24
77	Electronic Structure Engineering of Honeycomb Layered Cathode Material for Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2003399.	10.2	24
78	A New Approach to Stable Cationic and Anionic Redox Activity in O3â€Layered Cathode for Sodiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2100901.	10.2	24
79	Particle size effects of PtRu nanoparticles embedded in TiO2 on methanol electrooxidation. Electrochimica Acta, 2010, 55, 7939-7944.	2.6	23
80	Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles. Langmuir, 2011, 27, 3128-3137.	1.6	21
81	Stability characteristics of Pt1Ni1/C as cathode catalysts in membrane electrode assembly of polymer electrolyte membrane fuel cell. Electrochimica Acta, 2012, 59, 264-269.	2.6	21
82	Effects of Ag-embedment on electronic and ionic conductivities of LiMnPO ₄ and its performance as a cathode for lithium-ion batteries. Nanoscale, 2015, 7, 13860-13867.	2.8	21
83	A "surface patching―strategy to achieve highly efficient solar water oxidation beyond surface passivation effect. Nano Energy, 2019, 66, 104110.	8.2	20
84	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19
85	Harnessing Strong Metal–Support Interaction to Proliferate the Dry Reforming of Methane Performance by In Situ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 12140-12148.	4.0	19
86	Boosting Support Reducibility and Metal Dispersion by Exposed Surface Atom Control for Highly Active Supported Metal Catalysts. ACS Catalysis, 2022, 12, 4402-4414.	5 . 5	19
87	Disordered-Layer-Mediated Reverse Metal–Oxide Interactions for Enhanced Photocatalytic Water Splitting. Nano Letters, 2021, 21, 5247-5253.	4.5	18
88	Enhancements in catalytic activity and duration of PdFe bimetallic catalysts and their use in direct formic acid fuel cells. Journal of Industrial and Engineering Chemistry, 2020, 90, 351-357.	2.9	17
89	Atomic-Scale Engineered Fe Single-Atom Electrocatalyst Based on Waste Pig Blood for High-Performance AEMFCs. ACS Sustainable Chemistry and Engineering, 2021, 9, 7863-7872.	3.2	17
90	Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy, 2022, 97, 107206.	8.2	17

#	Article	IF	Citations
91	Selective deposition of Pt onto supported metal clusters for fuel cell electrocatalysts. Nanoscale, 2012, 4, 6461.	2.8	16
92	Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production. Nano Energy, 2020, 78, 105151.	8.2	16
93	Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16286-16297.	4.0	15
94	PtRu-Modified Au Nanoparticles as Electrocatalysts for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2009, 156, B1150.	1.3	13
95	Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions. Physical Chemistry Chemical Physics, 2013, 15, 2125.	1.3	13
96	Synthesis of nanobranched TiO2 nanotubes and their application to dye-sensitized solar cells. Current Applied Physics, 2013, 13, 252-255.	1.1	13
97	Unprecedented electrocatalytic oxygen evolution performances by cobalt-incorporated molybdenum carbide microflowers with controlled charge re-distribution. Journal of Materials Chemistry A, 2021, 9, 1770-1783.	5.2	13
98	PtRu overlayers on Au nanoparticles for methanol electro-oxidation. Catalysis Today, 2009, 146, 20-24.	2.2	12
99	Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles. Journal of Power Sources, 2016, 334, 52-57.	4.0	12
100	<scp>Nonprecious</scp> Metal Bifunctional Catalysts for Oxygen Electrocatalysis Using a <scp>Metalâ€Organic</scp> Framework. Bulletin of the Korean Chemical Society, 2021, 42, 919-924.	1.0	11
101	Oxygen-Vacancy-Driven Orbital Reconstruction at the Surface of TiO ₂ Core–Shell Nanostructures. Nano Letters, 2021, 21, 7953-7959.	4.5	11
102	Lithium manganese phosphate-carbon composite as a highly active and durable electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2017, 245, 219-226.	2.6	10
103	An analytical method to characterize the crystal structure of layered double hydroxides: synthesis, characterization, and electrochemical studies of zinc-based LDH nanoplates. Journal of Materials Chemistry A, 2020, 8, 8692-8699.	5.2	10
104	Alteration of oxygen evolution mechanisms in layered LiCoO ₂ structures by intercalation of alkali metal ions. Journal of Materials Chemistry A, 2022, 10, 10967-10978.	5.2	10
105	Surface Structures and Electrochemical Activities of PtRu Overlayers on Ir Nanoparticles. ACS Catalysis, 2012, 2, 739-745.	5.5	9
106	A stable and active three-dimensional carbon based trimetallic electrocatalyst for efficient overall wastewater splitting. International Journal of Hydrogen Energy, 2021, 46, 30762-30779.	3.8	9
107	Controllable synthesis of single-layer graphene over cobalt nanoparticles and insight into active sites for efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12060-12073.	5.2	9
108	Systematic Approach to Designing a Highly Efficient Core–Shell Electrocatalyst for N ₂ O Reduction. ACS Catalysis, 2021, 11, 15089-15097.	5 . 5	9

#	Article	IF	Citations
109	Atomic Rearrangement in Core–Shell Catalysts Induced by Electrochemical Activation for Favorable Oxygen Reduction in Acid Electrolytes. ACS Catalysis, 2021, 11, 15098-15109.	5.5	9
110	Precise synthesis of single-atom Mo, W, Nb coordinated with oxygen functional groups of graphene oxide for stable and selective two-electron oxygen reduction in neutral media. Journal of Materials Chemistry A, 2022, 10, 9488-9496.	5.2	8
111	Adsorption of rare earth metals (Sr ²⁺ and La ³⁺) from aqueous solution by Mg-aminoclay–humic acid [MgAC–HA] complexes in batch mode. RSC Advances, 2016, 6, 1324-1332.	1.7	7
112	Structural characterization of Zr-doped ZnO films deposited on quartz substrates by reactive radio frequency magnetron co-sputtering. Thin Solid Films, 2018, 651, 42-47.	0.8	7
113	Origin of the Superior Electrochemical Performance of Amorphous-Phase Conversion-Reaction-Based Electrode Materials for Na-Ion Batteries: Formation of a Bicontinuous Metal Network. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22721-22729.	4.0	7
114	Enhancing the inherent catalytic activity and stability of TiO ₂ supported Pt single-atoms at CeO _{<i>x</i>} â€"TiO ₂ interfaces. Journal of Materials Chemistry A, 2022, 10, 5942-5952.	5.2	7
115	Interspersing CeO _{<i>x</i>} Clusters to the Ptâ€"TiO ₂ Interfaces for Catalytic Promotion of TiO ₂ -Supported Pt Nanoparticles. Journal of Physical Chemistry Letters, 2022, 13, 1719-1725.	2.1	7
116	Effect of oleylamine concentration on the structure and oxygen reduction activity of carbon-supported surface-Pt-enriched Pt 3 Au electrocatalysts. Journal of Power Sources, 2015, 290, 130-135.	4.0	6
117	Facile synthesis of platinum alloy electrocatalyst via aluminum reducing agent and the effect of post heat treatment for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22952-22962.	3.8	6
118	Insight on the treatment of pig blood as biomass derived electrocatalyst precursor for high performance in the oxygen reduction reaction. Applied Surface Science, 2021, 545, 148940.	3.1	6
119	Effect of the amount of reducing agent on surface structures, electrochemical activity and stability of PtRu catalysts. Electrochimica Acta, 2011, 56, 8688-8694.	2.6	5
120	Cerium Aminoclayâ€"A Potential Hybrid Biomaterial for Anticancer Therapy. ACS Biomaterials Science and Engineering, 2019, 5, 5857-5871.	2.6	5
121	Bi doping stimulation on the visible-light absorption of In2O3 ceramics. Journal of Alloys and Compounds, 2021, 878, 160339.	2.8	5
122	High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent. Journal of Electrochemical Science and Technology, 2010, 1, 19-24.	0.9	5
123	Structural investigation of $SnO < sub > 2 < / sub > catalytic nanoparticles doped with F and Sb. Surface and Interface Analysis, 2014, 46, 1090-1093.$	0.8	4
124	Anion Constructor for Atomicâ€Scale Engineering of Antiperovskite Crystals for Electrochemical Reactions. Advanced Functional Materials, 2021, 31, 2009241.	7.8	4
125	Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells. Journal of Electrochemical Science and Technology, 2016, 7, 269-276.	0.9	4
126	Enhanced performances of InGaN-based light-emitting diode by a micro-roughened p-GaN surface using metal clusters. , 2002, , .		3

#	Article	IF	CITATIONS
127	Electrical and Optical Characteristics of InGaN/GaN Microdisk LEDs. Electrochemical and Solid-State Letters, 2005, 8, G68.	2.2	3
128	Effect of Nafion ionomer and catalyst in cathode layers for the direct formic acid fuel cell with complex capacitance analysis on the ionic resistance. Electrochimica Acta, $2011, \ldots$	2.6	3
129	Oxygen Reduction Reaction of Pt Supported on Y-Doped SrTiO3. Electrochemical and Solid-State Letters, 2012, 15, B61.	2.2	3
130	Effects of Self-Catalyzed Polyaniline Coating on the Electrochemical Performance of 0.4Li2MnO3{middle dot}0.6LiMn0.33Ni0.33Co0.33O2 Electrodes. ECS Electrochemistry Letters, 2014, 4, A15-A17.	1.9	3
131	Hydrogen-Mediated Thin Pt Layer Formation on Ni ₃ N Nanoparticles for the Oxygen Reduction Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 24624-24633.	4.0	3
132	Hydrogen Oxidation Reaction Activity of Sub-Monolayer Pt-Shell/Pd-Core Nanoparticles. Journal of the Electrochemical Society, 2013, 160, H62-H66.	1.3	2
133	Annealing dependence of structural and optical properties of Zr-doped ZnO films deposited by radio frequency magnetron co-sputtering. Thin Solid Films, 2020, 696, 137782.	0.8	1
134	Phase Change <i>via</i> Intermediary Metastable Local Structure of Ge Atoms in Ge ₂ Sb ₂ Te ₅ Nanowires during Electrical Switching. ACS Applied Electronic Materials, 2020, 2, 2418-2428.	2.0	1
135	Charge transfer rhenium complexes analogue to pertechnetate removal. Journal of Environmental Chemical Engineering, 2020, 8, 104366.	3.3	1
136	Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells. Journal of Electrochemical Science and Technology, 2016, 7, 269-276.	0.9	1
137	Ethanol Electro-Oxidation and Stability of Pt Supported on Sb-Doped Tin Oxide. Journal of the Korean Electrochemical Society, 2008, 11, 141-146.	0.1	1
138	Controlling Multiple Active Sites on Pdâ^'CeO 2 for Sequential Câ^'C Cross oupling and Alcohol Oxidation in One Reaction System. ChemCatChem, 0, , .	1.8	1
139	Atomicâ€Scale Engineering: Anion Constructor for Atomicâ€Scale Engineering of Antiperovskite Crystals for Electrochemical Reactions (Adv. Funct. Mater. 16/2021). Advanced Functional Materials, 2021, 31, 2170112.	7.8	0