
Paul Linsdell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/601827/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glutathione permeability of CFTR. American Journal of Physiology - Cell Physiology, 1998, 275, C323-C326.	2.1	244
2	Permeability of Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels to Polyatomic Anions. Journal of General Physiology, 1997, 110, 355-364.	0.9	199
3	Adenosine Triphosphate–dependent Asymmetry of Anion Permeation in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of General Physiology, 1998, 111, 601-614.	0.9	138
4	Disease-associated Mutations in the Fourth Cytoplasmic Loop of Cystic Fibrosis Transmembrane Conductance Regulator Compromise Biosynthetic Processing and Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 15139-15145.	1.6	105
5	Halide Permeation in Wild-Type and Mutant Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. Journal of General Physiology, 1997, 110, 341-354.	0.9	104
6	Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Experimental Physiology, 2006, 91, 123-129.	0.9	98
7	Cytoplasmic Loop Three of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Regulation of Chloride Channel Activity. Journal of Biological Chemistry, 1996, 271, 27493-27499.	1.6	93
8	Molecular Determinants of Anion Selectivity in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Biophysical Journal, 2000, 78, 2973-2982.	0.2	90
9	Characterization of basolateral K + channels underlying anion secretion in the human airway cell line Caluâ€3. Journal of Physiology, 2002, 538, 747-757.	1.3	84
10	Multi-Ion Mechanism for Ion Permeation and Block in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of General Physiology, 1997, 110, 365-377.	0.9	83
11	Mechanism of direct bicarbonate transport by the CFTR anion channel. Journal of Cystic Fibrosis, 2009, 8, 115-121.	0.3	83
12	Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. Journal of Physiology, 2001, 531, 51-66.	1.3	81
13	Location of a Common Inhibitor Binding Site in the Cytoplasmic Vestibule of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Journal of Biological Chemistry, 2005, 280, 8945-8950.	1.6	75
14	Positive Charges at the Intracellular Mouth of the Pore Regulate Anion Conduction in the CFTR Chloride Channel. Journal of General Physiology, 2006, 128, 535-545.	0.9	73
15	Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Clâ^'channel expressed in mammalian cell lines. Journal of Physiology, 1998, 512, 1-16.	1.3	69
16	Molecular determinants of Au(CN)2â^'binding and permeability within the cystic fibrosis transmembrane conductance regulator Clâ^'channel pore. Journal of Physiology, 2002, 540, 39-47.	1.3	68
17	Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. Journal of General Physiology, 2010, 135, 229-245.	0.9	65
18	Direct Comparison of the Functional Roles Played by Different Transmembrane Regions in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Journal of Biological Chemistry, 2004, 279, 55283-55289.	1.6	62

#	Article	IF	CITATIONS
19	Oxidant stress stimulates anion secretion from the human airway epithelial cell line caluâ€3: implications for cystic fibrosis lung disease. Journal of Physiology, 2002, 543, 201-209.	1.3	59
20	Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Journal of General Physiology, 2011, 138, 165-178.	0.9	54
21	Changes in Accessibility of Cytoplasmic Substances to the Pore Associated with Activation of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of Biological Chemistry, 2010, 285, 32126-32140.	1.6	53
22	Molecular Determinants and Role of An Anion Binding Site in the External Mouth of the CFTR Chloride Channel Pore. Journal of Physiology, 2003, 549, 387-397.	1.3	50
23	Functional architecture of the CFTR chloride channel. Molecular Membrane Biology, 2014, 31, 1-16.	2.0	46
24	Architecture and functional properties of the CFTR channel pore. Cellular and Molecular Life Sciences, 2017, 74, 67-83.	2.4	44
25	Contribution of KCNQ1 to the regulatory volume decrease in the human mammary epithelial cell line MCF-7. American Journal of Physiology - Cell Physiology, 2007, 293, C1010-C1019.	2.1	42
26	Mutation-induced Blocker Permeability and Multiion Block of the CFTR Chloride Channel Pore. Journal of General Physiology, 2003, 122, 673-687.	0.9	41
27	Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflugers Archiv European Journal of Physiology, 2008, 457, 351-360.	1.3	41
28	Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflugers Archiv European Journal of Physiology, 2011, 462, 559-571.	1.3	41
29	Novel Regulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Gating by External Chloride. Journal of Biological Chemistry, 2004, 279, 41658-41663.	1.6	40
30	Asymmetric Structure of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore Suggested by Mutagenesis of the Twelfth Transmembrane Regionâ€. Biochemistry, 2001, 40, 6620-6627.	1.2	39
31	ldentification of a Second Blocker Binding Site at the Cytoplasmic Mouth of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Molecular Pharmacology, 2007, 71, 1360-1368.	1.0	39
32	Substrates of multidrug resistance-associated proteins block the cystic fibrosis transmembrane conductance regulator chloride channel. British Journal of Pharmacology, 1999, 126, 1471-1477.	2.7	38
33	Multiple inhibitory effects of Au(CN)2â~ions on cystic fibrosis transmembrane conductance regulator Clâ~channel currents. Journal of Physiology, 2002, 540, 29-38.	1.3	37
34	Novel Residues Lining the CFTR Chloride Channel Pore Identified by Functional Modification of Introduced Cysteines. Journal of Membrane Biology, 2009, 228, 151-164.	1.0	36
35	Functional Architecture of the Cytoplasmic Entrance to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Journal of Biological Chemistry, 2015, 290, 15855-15865.	1.6	36
36	Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid. Canadian Journal of Physiology and Pharmacology, 2000, 78, 490-499.	0.7	35

#	Article	IF	CITATIONS
37	Elevation of cytosolic calcium by cholinoceptor agonists in SH‣Y5Y human neuroblastoma cells: estimation of the contribution of voltageâ€dependent currents. British Journal of Pharmacology, 1992, 107, 207-214.	2.7	32
38	Relative contribution of different transmembrane segments to the CFTR chloride channel pore. Pflugers Archiv European Journal of Physiology, 2014, 466, 477-490.	1.3	32
39	Mechanism of lonidamine inhibition of the CFTR chloride channel. British Journal of Pharmacology, 2002, 137, 928-936.	2.7	31
40	Thiocyanate as a probe of the cystic fibrosis transmembrane conductance regulator chloride channel pore. Canadian Journal of Physiology and Pharmacology, 2001, 79, 573-579.	0.7	29
41	Alternating Access to the Transmembrane Domain of the ATP-binding Cassette Protein Cystic Fibrosis Transmembrane Conductance Regulator (ABCC7). Journal of Biological Chemistry, 2012, 287, 10156-10165.	1.6	28
42	Cystic fibrosis transmembrane conductance regulator chloride channel blockers: Pharmacological, biophysical and physiological relevance. World Journal of Biological Chemistry, 2014, 5, 26.	1.7	28
43	Direct block of the cystic fibrosis transmembrane conductance regulator Clâ^' channel by butyrate and phenylbutyrate. European Journal of Pharmacology, 2001, 411, 255-260.	1.7	27
44	Cystic fibrosis transmembrane conductance regulator (CFTR): Making an ion channel out of an active transporter structure. Channels, 2018, 12, 284-290.	1.5	27
45	Direct and Indirect Effects of Mutations at the Outer Mouth of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Journal of Membrane Biology, 2007, 216, 129-142.	1.0	26
46	State-dependent Access of Anions to the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Journal of Biological Chemistry, 2008, 283, 6102-6109.	1.6	26
47	Tuning of CFTR Chloride Channel Function by Location of Positive Charges within the Pore. Biophysical Journal, 2012, 103, 1719-1726.	0.2	26
48	Cytoplasmic pathway followed by chloride ions to enter the CFTR channel pore. Cellular and Molecular Life Sciences, 2016, 73, 1917-1925.	2.4	26
49	The patch-clamp and planar lipid bilayer techniques: powerful and versatile tools to investigate the CFTR Clâ" channel. Journal of Cystic Fibrosis, 2004, 3, 101-108.	0.3	25
50	Maximization of the rate of chloride conduction in the CFTR channel pore by ion–ion interactions. Archives of Biochemistry and Biophysics, 2004, 426, 78-82.	1.4	25
51	Tyrosine kinase and phosphatase regulation of slow delayed-rectifier K+current in guinea-pig ventricular myocytes. Journal of Physiology, 2006, 573, 469-482.	1.3	25
52	Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pflugers Archiv European Journal of Physiology, 2002, 443, 739-747.	1.3	23
53	Coupled Movement of Permeant and Blocking Ions in the CFTR Chloride Channel Pore. Journal of Physiology, 2003, 549, 375-385.	1.3	21
54	On the Origin of Asymmetric Interactions between Permeant Anions and the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore. Biophysical Journal, 2007, 92, 1241-1253.	0.2	21

#	Article	IF	CITATIONS
55	Relative Movements of Transmembrane Regions at the Outer Mouth of the Cystic Fibrosis Transmembrane Conductance Regulator Channel Pore during Channel Gating. Journal of Biological Chemistry, 2012, 287, 32136-32146.	1.6	21
56	Anion conductance selectivity mechanism of the CFTR chloride channel. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 740-747.	1.4	20
57	Conformational change opening the CFTR chloride channel pore coupled to ATP-dependent gating. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 851-860.	1.4	19
58	Functional organization of cytoplasmic portals controlling access to the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore. Journal of Biological Chemistry, 2018, 293, 5649-5658.	1.6	19
59	[11] Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods in Enzymology, 1998, 293, 169-194.	0.4	18
60	Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore. Molecular Membrane Biology, 2003, 20, 45-52.	2.0	18
61	Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel. European Journal of Pharmacology, 2007, 563, 88-91.	1.7	17
62	Functional Differences in Pore Properties Between Wild-Type and Cysteine-Less Forms of the CFTR Chloride Channel. Journal of Membrane Biology, 2011, 243, 15-23.	1.0	17
63	Regulation of CFTR chloride channel macroscopic conductance by extracellular bicarbonate. American Journal of Physiology - Cell Physiology, 2011, 300, C65-C74.	2.1	17
64	State-dependent blocker interactions with the CFTR chloride channel: implications for gating the pore. Pflugers Archiv European Journal of Physiology, 2014, 466, 2243-2255.	1.3	16
65	The cystic fibrosis transmembrane conductance regulator is an extracellular chloride sensor. Pflugers Archiv European Journal of Physiology, 2015, 467, 1783-1794.	1.3	16
66	Contribution of the eighth transmembrane segment to the function of the CFTR chloride channel pore. Cellular and Molecular Life Sciences, 2019, 76, 2411-2423.	2.4	15
67	Metal bridges to probe membrane ion channel structure and function. Biomolecular Concepts, 2015, 6, 191-203.	1.0	14
68	Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Journal of Physiological Sciences, 2015, 65, 233-241.	0.9	13
69	Contribution of a leucine residue in the first transmembrane segment to the selectivity filter region in the CFTR chloride channel. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1049-1058.	1.4	13
70	Metal Bridges Illuminate Transmembrane Domain Movements during Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Journal of Biological Chemistry, 2014, 289, 28149-28159.	1.6	12
71	Conformational changes opening and closing the CFTR chloride channel: Insights from cysteine scanning mutagenesis. Biochemistry and Cell Biology, 2014, 92, 481-488.	0.9	12
72	Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties. Canadian Journal of Physiology and Pharmacology, 2009, 87, 387-395.	0.7	11

#	Article	IF	CITATIONS
73	Interactions between permeant and blocking anions inside the CFTR chloride channel pore. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1573-1590.	1.4	11
74	Exposure to sodium butyrate leads to functional downregulation of calcium-activated potassium channels in human airway epithelial cells. Pflugers Archiv European Journal of Physiology, 2006, 453, 167-176.	1.3	9
75	Pharmacological separation of hEAG and hERG K+ channel function in the human mammary carcinoma cell line MCF-7. Oncology Reports, 2008, , .	1.2	9
76	Role of the Juxtamembrane Region of Cytoplasmic Loop 3 in the Gating and Conductance of the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel. Biochemistry, 2012, 51, 3971-3981.	1.2	9
77	Pseudohalide anions reveal a novel extracellular site for potentiators to increase CFTR function. British Journal of Pharmacology, 2012, 167, 1062-1075.	2.7	9
78	Regulation of wild-type and mutant KCNQ1/KCNE1 channels by tyrosine kinase. Pflugers Archiv European Journal of Physiology, 2009, 458, 471-480.	1.3	8
79	Interaction between 2 extracellular loops influences the activity of the cystic fibrosis transmembrane conductance regulator chloride channel. Biochemistry and Cell Biology, 2014, 92, 390-396.	0.9	8
80	Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore. Advances in Experimental Medicine and Biology, 2016, 925, 13-32.	0.8	8
81	Interactions between Impermeant Blocking Ions in the Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Pore: Evidence for Anion-Induced Conformational Changes. Journal of Membrane Biology, 2006, 210, 31-42.	1.0	7
82	Expression of the chloride channel CLC-K in human airway epithelial cells. Canadian Journal of Physiology and Pharmacology, 2005, 83, 1123-1128.	0.7	6
83	Role of kinases and G-proteins in the hyposmotic stimulation of cardiac IKs. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 1641-1652.	1.4	6
84	On the relationship between anion binding and chloride conductance in the CFTR anion channel. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183558.	1.4	6
85	Selective block of swelling-activated Clâ^' channels over cAMP-dependent Clâ^' channels in ventricular myocytes. European Journal of Pharmacology, 2004, 491, 111-120.	1.7	5
86	Involvement of tyrosine kinase in the hyposmotic stimulation of I Ks in guinea-pig ventricular myocytes. Pflugers Archiv European Journal of Physiology, 2008, 456, 489-500.	1.3	5
87	Conformational change of the extracellular parts of the CFTR protein during channel gating. Cellular and Molecular Life Sciences, 2018, 75, 3027-3038.	2.4	5
88	Insensitivity of cardiac delayed-rectifier I Kr to tyrosine phosphorylation inhibitors and stimulators. British Journal of Pharmacology, 2006, 148, 724-731.	2.7	4
89	Electrostatic Tuning of Anion Attraction from the Cytoplasm to the Pore of the CFTR Chloride Channel. Cell Biochemistry and Biophysics, 2020, 78, 15-22.	0.9	4
90	Two positively charged amino acid side-chains in the inner vestibule of the CFTR channel pore play analogous roles in controlling anion binding and anion conductance. Cellular and Molecular Life Sciences, 2021, 78, 5213-5223.	2.4	2

#	Article	IF	CITATIONS
91	Alternating access to the transmembrane domain of the ATP-binding cassette protein cystic fibrosis transmembrane conductance regulator (ABCC7) Journal of Biological Chemistry, 2012, 287, 27448.	1.6	1
92	Monovalent: Divalent Anion Selectivity in the CFTR Channel Pore. Cell Biochemistry and Biophysics, 2021, 79, 863-871.	0.9	1
93	Dexamethasoneâ€enhanced sodium absorption in the human mammary epithelial cell line, MCFâ€7. FASEB Journal, 2006, 20, A794.	0.2	Ο
94	Involvement of KCNQ1 K+ channels in cell volume regulation in human mammary epithelial cells. FASEB Journal, 2007, 21, A543.	0.2	0
95	Functionally additive fixed positive and negative charges inÂthe CFTR channel pore control anion binding and conductance. Journal of Biological Chemistry, 2022, 298, 101659.	1.6	Ο