LuÃ-s F Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/601796/publications.pdf Version: 2024-02-01

<u>ΙμÃς Ε Ολ Sulva</u>

#	Article	IF	CITATIONS
1	α Ag2WO4 under microwave, electron beam and femtosecond laser irradiations: Unveiling the relationship between morphology and photoluminescence emissions. Journal of Alloys and Compounds, 2022, 903, 163840.	5.5	3
2	Light-assisted ozone gas-sensing performance of SnO2 nanoparticles: Experimental and theoretical insights. Sensors and Actuators Reports, 2022, 4, 100081.	4.4	3
3	Effects of donor density on power-law response in tin dioxide gas sensors. Sensors and Actuators B: Chemical, 2021, 329, 129253.	7.8	8
4	BTEX gas sensor based on hematite microrhombuses. Sensors and Actuators B: Chemical, 2021, 326, 128817.	7.8	17
5	Cerium molybdate nanocrystals: Microstructural, optical and gas-sensing properties. Journal of Alloys and Compounds, 2021, 857, 157562.	5.5	11
6	Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe ₂ O ₄ Nanoparticles: Theoretical and Experimental Insights. ACS Applied Materials & Interfaces, 2021, 13, 4605-4617.	8.0	49
7	Effect of the oxidation state and morphology of SnOx-based electrocatalysts on the CO2 reduction reaction. Journal of Materials Research, 2021, 36, 4240-4248.	2.6	5
8	Hematite rhombuses for chemiresitive ozone sensors: Experimental and theoretical approaches. Applied Surface Science, 2021, 563, 150209.	6.1	8
9	Selective Synthesis of α-, β-, and γ-Ag ₂ WO ₄ Polymorphs: Promising Platforms for Photocatalytic and Antibacterial Materials. Inorganic Chemistry, 2021, 60, 1062-1079.	4.0	18
10	Towards a white-emitting phosphor Ca10V6O25 based material. Journal of Luminescence, 2020, 220, 116990.	3.1	5
11	Multi-dimensional architecture of Ag/α-Ag ₂ WO ₄ crystals: insights into microstructural, morphological, and photoluminescence properties. CrystEngComm, 2020, 22, 7903-7917.	2.6	9
12	Unraveling the Photoluminescence Properties of the Sr ₁₀ V ₆ O ₂₅ Structure through Experimental and Theoretical Analyses. Journal of Physical Chemistry C, 2020, 124, 14446-14458.	3.1	3
13	The role of counter-ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown onto a substrate. Applied Surface Science, 2020, 529, 147057.	6.1	15
14	One-Dimensional V ₂ O ₅ /TiO ₂ Heterostructures for Chemiresistive Ozone Sensors. ACS Applied Nano Materials, 2019, 2, 4756-4764.	5.0	41
15	Unveiling the efficiency of microwave-assisted hydrothermal treatment for the preparation of SrTiO ₃ mesocrystals. Physical Chemistry Chemical Physics, 2019, 21, 22031-22038.	2.8	11
16	Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique. Applied Surface Science, 2019, 478, 347-354.	6.1	53
17	UV-assisted chemiresistors made with gold-modified ZnO nanorods to detect ozone gas at room temperature. Mikrochimica Acta, 2019, 186, 418.	5.0	109
18	Nanostructured ZnS:Cu phosphor: Correlation between photoluminescence properties and local structure. Journal of Luminescence, 2019, 206, 292-297.	3.1	19

LuÃs F Da Silva

#	Article	IF	CITATIONS
19	Luminescent and gas sensor properties of the ZrO2:Hhpa:Eu3+ Hybrid Compound. Journal of Luminescence, 2018, 197, 38-46.	3.1	4
20	Improving the ozone gas-sensing properties of CuWO4 nanoparticles. Journal of Alloys and Compounds, 2018, 748, 411-417.	5.5	44
21	Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sensors and Actuators B: Chemical, 2018, 257, 906-915.	7.8	197
22	The Role of Nb Addition in TiO2 Nanoparticles: Phase Transition and Photocatalytic Properties (Phys.) Tj ETQq0 0	0 ₁₉ 87 /O	verlock 10 Tf
23	The Role of Nb Addition in TiO ₂ Nanoparticles: Phase Transition and Photocatalytic Properties. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800321.	1.8	7
24	rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method. Applied Surface Science, 2017, 423, 743-751.	6.1	59
25	UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sensors and Actuators B: Chemical, 2017, 240, 573-579.	7.8	108
26	ZnO/SnO2 Heterojunctions Sensors with UV-Enhanced Gas-Sensing Properties at Room Temperature. Proceedings (mdpi), 2017, 1, 418.	0.2	4
27	An Understanding of the Photocatalytic Properties and Pollutant Degradation Mechanism of SrTiO ₃ Nanoparticles. Photochemistry and Photobiology, 2016, 92, 371-378.	2.5	49
28	Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. , 2016, , .		12
29	Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 2016, 683, 186-190.	5.5	66
30	Local Structure and Surface Properties of Co _{<i>x</i>} Zn _{1–<i>x</i>} O Thin Films for Ozone Gas Sensing. ACS Applied Materials & Interfaces, 2016, 8, 26066-26072.	8.0	57
31	One-step approach for preparing ozone gas sensors based on hierarchical NiCo ₂ O ₄ structures. RSC Advances, 2016, 6, 92655-92662.	3.6	114
32	Structure and diffuse-boundary in hydrophobic and sodium dodecyl sulfate-modified silica aerogels. Microporous and Mesoporous Materials, 2016, 223, 196-202.	4.4	9
33	Hierarchical growth of ZnO nanorods over SnO ₂ seed layer: insights into electronic properties from photocatalytic activity. RSC Advances, 2016, 6, 2112-2118.	3.6	44
34	An easy method of preparing ozone gas sensors based on ZnO nanorods. RSC Advances, 2015, 5, 19528-19533.	3.6	68
35	Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties. Journal of Solid State Chemistry, 2015, 230, 343-349.	2.9	35
36	Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film. Journal of Alloys and Compounds, 2015, 638, 374-379.	5.5	40

LuÃs F Da Silva

#	Article	IF	CITATIONS
37	Fingerprints of short-range and long-range structure in BaZr _{1â°x} Hf _x O ₃ solid solutions: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 11341-11349.	2.8	10
38	An investigation into the influence of zinc precursor on the microstructural, photoluminescence, and gas-sensing properties of ZnO nanoparticles. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	19
39	Influence of a co-substituted A-site on structural characteristics and ferroelectricity of (Pb, Ba,) Tj ETQq1 1 0.7843 Science and Technology, 2014, 69, 605-616.	14 rgBT /0 2.4	Overlock 10 8
40	A novel ozone gas sensor based on one-dimensional (1D) α-Ag ₂ WO ₄ nanostructures. Nanoscale, 2014, 6, 4058-4062.	5.6	105
41	Insight into the Effects of Fe Addition on the Local Structure and Electronic Properties of SrTiO ₃ . Journal of Physical Chemistry C, 2014, 118, 4930-4940.	3.1	45
42	Ozone gas sensor based on nanocrystalline SrTi1â^'Fe O3 thin films. Sensors and Actuators B: Chemical, 2013, 181, 919-924.	7.8	41
43	Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 12386.	2.8	91
44	Relationship between Crystal Shape, Photoluminescence, and Local Structure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrTiO by Microwave-Assisted Hydrothermal Method. Journal of Nanomaterials, 2012, 2012, 1-6.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math 	ו¢שתי∕ים) קודיתים	ce x8 >
45	Novel SrTi1â^'xFexO3 nanocubes synthesized by microwave-assisted hydrothermal method. CrystEngComm, 2012, 14, 4068.	2.6	21
46	An improved method for preparation of SrTiO3 nanoparticles. Materials Chemistry and Physics, 2011, 125, 168-173.	4.0	69
47	Synthesis and thermal decomposition of SrTi1â^'x Fe x O3 (0.0Ââ‰ÂxÂâ‰Â0.1) powders obtained by the polyme precursor method. Journal of Thermal Analysis and Calorimetry, 2009, 97, 173-177.	eric 3.6	29
48	Nanocrystalline GaN and GaN: H films grown by RF-magnetron sputtering. Brazilian Journal of Physics, 2006, 36, 978-981.	1.4	7
49	Nanocrystalline Ga1â^'xMnxN films grown by reactive sputtering. Journal of Crystal Growth, 2006, 294, 309-314.	1.5	19