

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017625/publications.pdf Version: 2024-02-01

L ET YT

#	Article	IF	CITATIONS
1	Response of Circulating Inflammatory Markers to Intermittent Hypoxia-Hyperoxia Training in Healthy Elderly People and Patients with Mild Cognitive Impairment. Life, 2022, 12, 432.	1.1	9
2	Role of Chitinase-3-like Protein 1 in Cardioprotection and Angiogenesis by Post-Infarction Exercise Training. Biomedicines, 2022, 10, 1028.	1.4	1
3	Role of phosphodiesterase 1 in the pathophysiology of diseases and potential therapeutic opportunities. , 2021, 226, 107858.		18
4	Role of Muscle-Specific Histone Methyltransferase (Smyd1) in Exercise-Induced Cardioprotection against Pathological Remodeling after Myocardial Infarction. International Journal of Molecular Sciences, 2020, 21, 7010.	1.8	17
5	Hypoxia, HIF-1α, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica, 2020, 41, 1539-1546.	2.8	154
6	CARD9: key player or bystander in cardiac remodeling under hypertension?. Hypertension Research, 2020, 43, 1454-1456.	1.5	0
7	Sildenafil Potentiates the Therapeutic Efficacy of Docetaxel in Advanced Prostate Cancer by Stimulating NO-cGMP Signaling. Clinical Cancer Research, 2020, 26, 5720-5734.	3.2	28
8	PDE5 inhibitor sildenafil attenuates cardiac microRNA 214 upregulation and pro-apoptotic signaling after chronic alcohol ingestion in mice. Molecular and Cellular Biochemistry, 2020, 471, 189-201.	1.4	2
9	Utility of cardiac biomarkers in sports medicine: Focusing on troponin, natriuretic peptides, and hypoxanthine. Sports Medicine and Health Science, 2020, 2, 65-71.	0.7	6
10	Cardiovascular risks and toxicity - The Achilles heel of androgen deprivation therapy in prostate cancer patients. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188383.	3.3	23
11	Chronic inhibition of phosphodiesterase 5 with tadalafil affords cardioprotection in a mouse model of metabolic syndrome: role of nitric oxide. Molecular and Cellular Biochemistry, 2020, 468, 47-58.	1.4	12
12	Abstract 17414: Combination Therapy of Sildenafil and Rapamycin Alleviates Doxorubicin Induced Cardiotoxicity With Improvement of Skeletal Muscle Function. Circulation, 2020, 142, .	1.6	0
13	Intermittent Hypoxia-Hyperoxia Training Improves Cognitive Function and Decreases Circulating Biomarkers of Alzheimer's Disease in Patients with Mild Cognitive Impairment: A Pilot Study. International Journal of Molecular Sciences, 2019, 20, 5405.	1.8	63
14	Timing-Dependent Protection of Swimming Exercise against d-Galactose-Induced Aging-Like Impairments in Spatial Learning/Memory in Rats. Brain Sciences, 2019, 9, 236.	1.1	9
15	Effects of intermittent hypoxia training on leukocyte pyruvate dehydrogenase kinase 1 (PDK-1) mRNA expression and blood insulin level in prediabetes patients. European Journal of Applied Physiology, 2019, 119, 813-823.	1.2	15
16	Postinfarction exercise training alleviates cardiac dysfunction and adverse remodeling via mitochondrial biogenesis and SIRT1/PGCâ€1α/PI3K/Akt signaling. Journal of Cellular Physiology, 2019, 234, 23705-23718.	2.0	59
17	Beet Juice as Nutraceutical Remedy for Alleviating Pulmonary Arterial Hypertension: Searching for Optimal Treatment Timing and Nitrate Dose. American Journal of Hypertension, 2019, 32, 135-138.	1.0	1
18	Circulating biomarkers for cardiovascular diseases: the beats never stop. Acta Pharmacologica Sinica, 2018, 39, 1065-1067.	2.8	4

#	Article	IF	CITATIONS
19	Natriuretic peptide family as diagnostic/prognostic biomarker and treatment modality in management of adult and geriatric patients with heart failure: remaining issues and challenges. Journal of Geriatric Cardiology, 2018, 15, 540-546.	0.2	11
20	PDE5 Inhibitor Tadalafil and Hydroxychloroquine Cotreatment Provides Synergistic Protection against Type 2 Diabetes and Myocardial Infarction in Mice. Journal of Pharmacology and Experimental Therapeutics, 2017, 361, 29-38.	1.3	12
21	Intermittent hypoxia training in prediabetes patients: Beneficial effects on glucose homeostasis, hypoxia tolerance and gene expression. Experimental Biology and Medicine, 2017, 242, 1542-1552.	1.1	47
22	Potential Therapeutic Strategies for Hypertension-Exacerbated Cardiotoxicity of Anticancer Drugs. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	1.9	28
23	Role of Tissue and Systemic Hypoxia in Obesity and Type 2 Diabetes. Journal of Diabetes Research, 2016, 2016, 1-3.	1.0	16
24	Intermittent hypoxia training as non-pharmacologic therapy for cardiovascular diseases: Practical analysis on methods and equipment. Experimental Biology and Medicine, 2016, 241, 1708-1723.	1.1	57
25	Postconditioning of ischemic heart by intermittent ventricular pacing at the beginning of reperfusion: novel mechanisms and potential utilities in interventional cardiology settings. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1-H3.	1.5	4
26	Visnagin-a new protectant against doxorubicin cardiotoxicity? Inhibition of mitochondrial malate dehydrogenase 2 (MDH2) and beyond. Annals of Translational Medicine, 2016, 4, 65.	0.7	4
27	Intermittent Hypoxia in Childhood: The Harmful Consequences Versus Potential Benefits of Therapeutic Uses. Frontiers in Pediatrics, 2015, 3, 44.	0.9	19
28	Beetroot juice reduces infarct size and improves cardiac function following ischemia–reperfusion injury: Possible involvement of endogenous H ₂ S. Experimental Biology and Medicine, 2015, 240, 669-681.	1.1	24
29	Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Molecular and Cellular Biochemistry, 2015, 402, 41-49.	1.4	49
30	Inosine and hypoxanthine as novel biomarkers for cardiac ischemia: From bench to point-of-care. Experimental Biology and Medicine, 2015, 240, 821-831.	1.1	70
31	PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. , 2015, 147, 12-21.		187
32	PDE5 Inhibition with Sildenafil Blocks Induction of Carboxylesteras3 and Reduces Cell Necrosis and Autophagy in Acute Alcohol―Induced Injury in Heart. FASEB Journal, 2015, 29, 896.14.	0.2	0
33	Acute Alcohol Treatment and Cardiac Dysfunction in Obese Diabetic Mice: Role of PDE5 and MicroRNAâ€21. FASEB Journal, 2015, 29, 1020.9.	0.2	0
34	Abstract 10246: Hydroxychloroquine Pretreatment Reduces Myocardial Ischemia-Reperfusion Injury: Role of Cardiac Extracellular-Signal-Regulated Kinase 5 and Autophagy. Circulation, 2015, 132, .	1.6	1
35	Mammalian Target of Rapamycin (mTOR) Inhibition with Rapamycin Improves Cardiac Function in Type 2 Diabetic Mice. Journal of Biological Chemistry, 2014, 289, 4145-4160.	1.6	130
36	Chronic inhibition of phosphodiesterase 5 with tadalafil attenuates mitochondrial dysfunction in type 2 diabetic hearts: potential role of NO/SIRT1/PGC-1α signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1558-H1568.	1.5	76

#	Article	IF	CITATIONS
37	Sirtuin 1 (SIRT1) Activation Mediates Sildenafil Induced Delayed Cardioprotection against Ischemia-Reperfusion Injury in Mice. PLoS ONE, 2014, 9, e86977.	1.1	51
38	Dietary inorganic nitrate alleviates doxorubicin cardiotoxicity: Mechanisms and implications. Nitric Oxide - Biology and Chemistry, 2012, 26, 274-284.	1.2	39
39	Intermittent Hypoxia and Human Diseases. , 2012, , .		16
40	Chronic treatment with long acting phosphodiesterase-5 inhibitor tadalafil alters proteomic changes associated with cytoskeletal rearrangement and redox regulation in Type 2 diabetic hearts. Basic Research in Cardiology, 2012, 107, 249.	2.5	29
41	Type 2 diabetic obese <i>db/db</i> mice are refractory to myocardial ischaemic postâ€conditioning <i>in vivo</i> : potential role for Hsp20, F1â€ATPase δ and Echs1. Journal of Cellular and Molecular Medicine, 2012, 16, 950-958.	1.6	33
42	Individualized Intermittent Hypoxia Training: Principles and Practices. , 2012, , 281-289.		5
43	Intermittent Hypoxia and Atherosclerosis. , 2012, , 29-45.		3
44	Dietary Nitrate Supplementation Protects Against Doxorubicin-Induced Cardiomyopathy by Improving Mitochondrial Function. Journal of the American College of Cardiology, 2011, 57, 2181-2189.	1.2	82
45	Identification of protein targets underlying dietary nitrate-induced protection against doxorubicin cardiotoxicity. Journal of Cellular and Molecular Medicine, 2011, 15, 2512-2524.	1.6	22
46	A rapid and simple chemiluminescence method for screening levels of inosine and hypoxanthine in nonâ€ŧraumatic chest pain patients. Luminescence, 2011, 26, 65-75.	1.5	15
47	Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Experimental and Clinical Cardiology, 2011, 16, e30-5.	1.3	40
48	Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacologica Sinica, 2010, 31, 1085-1094.	2.8	129
49	A simple and sensitive HPLC fluorescence method for determination of tadalafil in mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2010, 878, 2891-2895.	1.2	44
50	Long-Acting Phosphodiesterase-5 Inhibitor Tadalafil Attenuates Doxorubicin-Induced Cardiomyopathy without Interfering with Chemotherapeutic Effect. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 1023-1030.	1.3	93
51	Rapamycin (Sirolimus)–induced protection against ischemiaâ€reperfusion injury is mediated through AMPK, Akt and JAK/STAT pathways in mouse heart. FASEB Journal, 2010, 24, 601.6.	0.2	0
52	Phosphodiesteraseâ€5 Inhibition with Tadalafil Attenuates Left Ventricular Dysfunction and Cardiomyocyte Apoptosis in Doxorubicinâ€induced Cardiotoxicity in Mice. FASEB Journal, 2010, 24, 785.10.	0.2	1
53	ERK phosphorylation mediates sildenafil-induced myocardial protection against ischemia-reperfusion injury in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1236-H1243.	1.5	121
54	Pivotal effects of phosphodiesterase inhibitors on myocyte contractility and viability in normal and ischemic hearts. Acta Pharmacologica Sinica, 2009, 30, 1-24.	2.8	49

#	Article	IF	CITATIONS
55	Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. Journal of Molecular and Cellular Cardiology, 2008, 44, 105-113.	0.9	71
56	Protein Kinase G-dependent Cardioprotective Mechanism of Phosphodiesterase-5 Inhibition Involves Phosphorylation of ERK and GSK3Î ² . Journal of Biological Chemistry, 2008, 283, 29572-29585.	1.6	175
57	Loss of Myocardial Ischemic Postconditioning in Adenosine A ₁ and Bradykinin B ₂ Receptors Gene Knockout Mice. Circulation, 2008, 118, S32-7.	1.6	65
58	Commentary on Viewpoint: Regulation of leptin by hypoxia. Journal of Applied Physiology, 2008, 105, 1687-1690.	1.2	5
59	Abstract 2893: Enhanced Myocardial Ischemic Tolerance in Hypercholesterolemic APOE Knockout Mice is Associated with Increased Expression of Caveolin 1 and Metallothionein. Circulation, 2008, 118, .	1.6	0
60	Abstract 2894: Essential Role of ERK 1/2 in Sildenafil-Induced Early and Delayed Cardioprotection in Mice. Circulation, 2008, 118, .	1.6	0
61	Anti-ischemic effects of sildenafil, vardenafil and tadalafil in heart. International Journal of Impotence Research, 2007, 19, 226-227.	1.0	14
62	Effects of salicylic acid on post-ischaemic ventricular function and purine efflux in isolated mouse hearts. Biomarkers, 2007, 12, 623-634.	0.9	9
63	eNOS phosphorylation: A pivotal molecular switch in vasodilation and cardioprotection?. Journal of Molecular and Cellular Cardiology, 2007, 42, 280-282.	0.9	64
64	Nonurologic applications of phosphodiesterase type 5 inhibitors. Current Sexual Health Reports, 2007, 4, 64-70.	0.4	2
65	Abstract 1568: Loss of Ischemic Postconditioning in the Mouse Hearts Lacking Adenosine A ₁ or Bradykinin B ₂ Receptors. Circulation, 2007, 116, .	1.6	0
66	Rapamycin confers preconditioning-like protection against ischemia–reperfusion injury in isolated mouse heart and cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2006, 41, 256-264.	0.9	181
67	Genetic Deletion of Fas Receptors or Fas Ligands Does Not Reduce Infarct Size After Acute Global Ischemia-Reperfusion in Isolated Mouse Heart. Cell Biochemistry and Biophysics, 2006, 44, 111-118.	0.9	10
68	Hypercholesterolemia Enhances Tolerance to Lethal Systemic Hypoxia in Middle-Aged Mice: Possible Role of VEGF Downregulation in Brain. Molecular and Cellular Biochemistry, 2006, 291, 205-211.	1.4	23
69	High-performance liquid chromatography (HPLC) determination of inosine, a potential biomarker for initial cardiac ischaemia, using isolated mouse hearts. Biomarkers, 2006, 11, 449-459.	0.9	12
70	Pharmacological preconditioning with sildenafil: Basic mechanisms and clinical implications. Vascular Pharmacology, 2005, 42, 219-232.	1.0	184
71	Phosphodiesterase-5 Inhibitor Sildenafil Preconditions Adult Cardiac Myocytes against Necrosis and Apoptosis. Journal of Biological Chemistry, 2005, 280, 12944-12955.	1.6	304
72	Silencing heat shock factor 1 by small interfering RNA abrogates heat shock-induced cardioprotection against ischemia–reperfusion injury in mice. Journal of Molecular and Cellular Cardiology, 2005, 39, 681-689.	0.9	39

#	Article	IF	CITATIONS
73	Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2070-H2077.	1.5	73
74	Cobalt chloride induces delayed cardiac preconditioning in mice through selective activation of HIF-1α and AP-1 and iNOS signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2369-H2375.	1.5	118
75	Cardioprotection with phosphodiesterase-5 inhibition—a novel preconditioning strategy. Journal of Molecular and Cellular Cardiology, 2004, 36, 165-173.	0.9	143
76	Sildenafil Induces Delayed Preconditioning Through Inducible Nitric Oxide Synthase–Dependent Pathway in Mouse Heart. Circulation Research, 2003, 92, 595-597.	2.0	225
77	Sildenafil-induced cardioprotection in rabbits. Cardiovascular Research, 2003, 60, 700-701.	1.8	18
78	Exercise Does Not Protect the Female Heart: An Unconvincing Conclusion?. Circulation Research, 2002, 91, e2.	2.0	10
79	Evidence that NOS2 acts as a trigger and mediator of late preconditioning induced by acute systemic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H5-H12.	1.5	62
80	Mitogen-activated protein kinases mediate heat shock-induced delayed protection in mouse heart. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H523-H532.	1.5	38
81	Pivotal role of nitric oxide in delayed pharmacological preconditioning against myocardial infarction. Toxicology, 2000, 155, 37-44.	2.0	26
82	Inducible Nitric Oxide Synthase Mediates Delayed Myocardial Protection Induced by Activation of Adenosine A ₁ Receptors. Circulation, 2000, 102, 902-907.	1.6	141
83	Glycolipid RC-552 induces delayed preconditioning-like effect via iNOS-dependent pathway in mice. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H2418-H2424.	1.5	25
84	Essential Role of Inducible Nitric Oxide Synthase in Monophosphoryl Lipid A–Induced Late Cardioprotection. Circulation, 1999, 99, 2157-2163.	1.6	134
85	Myocardial preconditioning: Basic concepts and potential mechanisms. Molecular and Cellular Biochemistry, 1999, 196, 3-12.	1.4	37
86	Myocardial ischemia/reperfusion injury in the inducible nitric oxide synthase knockout mice. Life Sciences, 1999, 65, 935-945.	2.0	32
87	Myocardial Protection by Monophosphoryl Lipid A: Potential Mechanisms. Cardiovascular Drug Reviews, 1999, 17, 265-280.	4.4	1
88	Myocardial preconditioning: Basic concepts and potential mechanisms. , 1999, , 3-12.		18
89	Title is missing!. Molecular and Cellular Biochemistry, 1998, 186, 69-77.	1.4	43
90	Whole Body Heat Shock Fails To Protect Mouse Heart Against Ischemia/Reperfusion Injury: Role of 72 kDa Heat Shock Protein and Antioxidant Enzymes. Journal of Molecular and Cellular Cardiology, 1998, 30, 2213-2227.	0.9	31

#	Article	IF	CITATIONS
91	Neural-mechanical coupling of breathing in REM sleep. Journal of Applied Physiology, 1997, 83, 1923-1932.	1.2	21
92	The role of pulmonary CO2 flow in the control of the phase i ventilatory response to exercise in humans. European Journal of Applied Physiology and Occupational Physiology, 1995, 71, 287-294.	1.2	5
93	A volume-dependent apneic threshold during NREM sleep in the dog. Journal of Applied Physiology, 1994, 76, 2315-2325.	1.2	39
94	Effects of REM Sleep on the Ventilatory Response to Airway Occlusion in the Dog. Sleep, 1994, 17, 674-687.	0.6	9
95	Ventilatory response to exercise after heart and lung denervation in humans. Respiration Physiology, 1993, 92, 289-304.	2.8	32
96	Effects of memory from vagal feedback on shortâ€ŧerm potentiation of ventilation in conscious dogs Journal of Physiology, 1993, 462, 547-561.	1.3	19
97	Apnoea following normocapnic mechanical ventilation in awake mammals: a demonstration of control system inertia Journal of Physiology, 1993, 472, 749-768.	1.3	54
98	Effects of rapid-eye-movement sleep on the apneic threshold in dogs. Journal of Applied Physiology, 1993, 75, 1129-1139.	1.2	34
99	Effects of acute hypoxia on ventilatory response at the onset of submaximal exercise The Japanese Journal of Physiology, 1990, 40, 417-422.	0.9	2